51、深度学习-自学之路-自己搭建深度学习框架-12、使用我们自己建的架构重写RNN预测网络

import numpy as np


class Tensor(object):

    def __init__(self, data,
                 autograd=False,
                 creators=None,
                 creation_op=None,
                 id=None):

        self.data = np.array(data)
        self.autograd = autograd
        self.grad = None
        if (id is None):
            self.id = np.random.randint(0, 100000)
        else:
            self.id = id

        self.creators = creators
        self.creation_op = creation_op
        self.children = {}

        if (creators is not None):
            for c in creators:
                if (self.id not in c.children):
                    c.children[self.id] = 1
                else:
                    c.children[self.id] += 1

    def all_children_grads_accounted_for(self):
        for id, cnt in self.children.items():
            if (cnt != 0):
                return False
        return True

    def backward(self, grad=None, grad_origin=None):
        if (self.autograd):

            if (grad is None):
                grad = Tensor(np.ones_like(self.data))

            if (grad_origin is not None):
                if (self.children[grad_origin.id] == 0):
                    raise Exception("cannot backprop more than once")
                else:
                    self.children[grad_origin.id] -= 1

            if (self.grad is None):
                self.grad = grad
            else:
                self.grad += grad

            # grads must not have grads of their own
            assert grad.autograd == False

            # only continue backpropping if there's something to
            # backprop into and if all gradients (from children)
            # are accounted for override waiting for children if
            # "backprop" was called on this variable directly
            if (self.creators is not None and
                    (self.all_children_grads_accounted_for() or
                     grad_origin is None)):

                if (self.creation_op == "add"):
                    self.creators[0].backward(self.grad, self)
                    self.creators[1].backward(self.grad, self)

                if (self.creation_op == "sub"):
                    self.creators[0].backward(Tensor(self.grad.data), self)
                    self.creators[1].backward(Tensor(self.grad.__neg__().data), self)

                if (self.creation_op == "mul"):
                    new = self.grad * self.creators[1]
                    self.creators[0].backward(new, self)
                    new = self.grad * self.creators[0]
                    self.creators[1].backward(new, self)

                if (self.creation_op == "mm"):
                    c0 = self.creators[0]
                    c1 = self.creators[1]
                    new = self.grad.mm(c1.transpose())
                    c0.backward(new)
                    new = self.grad.transpose().mm(c0).transpose()
                    c1.backward(new)

                if (self.creation_op == "transpose"):
                    self.creators[0].backward(self.grad.transpose())

                if ("sum" in self.creation_op):
                    dim = int(self.creation_op.split("_")[1])
                    self.creators[0].backward(self.grad.expand(dim,
                                                               self.creators[0].data.shape[dim]))

                if ("expand" in self.creation_op):
                    dim = int(self.creation_op.split("_")[1])
                    self.creators[0].backward(self.grad.sum(dim))

                if (self.creation_op == "neg"):
                    self.creators[0].backward(self.grad.__neg__())

                if (self.creation_op == "sigmoid"):
                    ones = Tensor(np.ones_like(self.grad.data))
                    self.creators[0].backward(self.grad * (self * (ones - self)))

                if (self.creation_op == "tanh"):
                    ones = Tensor(np.ones_like(self.grad.data))
                    self.creators[0].backward(self.grad * (ones - (self * self)))

                if (self.creation_op == "index_select"):
                    new_grad = np.zeros_like(self.creators[0].data)
                    indices_ = self.index_select_indices.data.flatten()
                    grad_ = grad.data.reshape(len(indices_), -1)
                    for i in range(len(indices_)):
                        new_grad[indices_[i]] += grad_[i]
                    self.creators[0].backward(Tensor(new_grad))

                if (self.creation_op == "cross_entropy"):
                    dx = self.softmax_output - self.target_dist
                    self.creators[0].backward(Tensor(dx))

    def __add__(self, other):
        if (self.autograd and other.autograd):
            return Tensor(self.data + other.data,
                          autograd=True,
                          creators=[self, other],
                          creation_op="add")
        return Tensor(self.data + other.data)

    def __neg__(self):
        if (self.autograd):
            return Tensor(self.data * -1,
                          autograd=True,
                          creators=[self],
                          creation_op="neg")
        return Tensor(self.data * -1)

    def __sub__(self, other):
        if (self.autograd and other.autograd):
            return Tensor(self.data - other.data,
                          autograd=True,
                          creators=[self, other],
                          creation_op="sub")
        return Tensor(self.data - other.data)

    def __mul__(self, other):
        if (self.autograd and other.autograd):
            return Tensor(self.data * other.data,
                          autograd=True,
                          creators=[self, other],
                          creation_op="mul")
        return Tensor(self.data * other.data)

    def sum(self, dim):
        if (self.autograd):
            return Tensor(self.data.sum(dim),
                          autograd=True,
                          creators=[self],
                          creation_op="sum_" + str(dim))
        return Tensor(self.data.sum(dim))

    def expand(self, dim, copies):

        trans_cmd = list(range(0, len(self.data.shape)))
        trans_cmd.insert(dim, len(self.data.shape))
        new_data = self.data.repeat(copies).reshape(list(self.data.shape) + [copies]).transpose(trans_cmd)

        if (self.autograd):
            return Tensor(new_data,
                          autograd=True,
                          creators=[self],
                          creation_op="expand_" + str(dim))
        return Tensor(new_data)

    def transpose(self):
        if (self.autograd):
            return Tensor(self.data.transpose(),
                          autograd=True,
                          creators=[self],
                          creation_op="transpose")

        return Tensor(self.data.transpose())

    def mm(self, x):
        if (self.autograd):
            return Tensor(self.data.dot(x.data),
                          autograd=True,
                          creators=[self, x],
                          creation_op="mm")
        return Tensor(self.data.dot(x.data))

    def sigmoid(self):
        if (self.autograd):
            return Tensor(1 / (1 + np.exp(-self.data)),
                          autograd=True,
                          creators=[self],
                          creation_op="sigmoid")
        return Tensor(1 / (1 + np.exp(-self.data)))

    def tanh(self):
        if (self.autograd):
            return Tensor(np.tanh(self.data),
                          autograd=True,
                          creators=[self],
                          creation_op="tanh")
        return Tensor(np.tanh(self.data))

    def index_select(self, indices):

        if (self.autograd):
            new = Tensor(self.data[indices.data],
                         autograd=True,
                         creators=[self],
                         creation_op="index_select")
            new.index_select_indices = indices
            return new
        return Tensor(self.data[indices.data])

    def cross_entropy(self, target_indices):

        temp = np.exp(self.data)
        softmax_output = temp / np.sum(temp,
                                       axis=len(self.data.shape) - 1,
                                       keepdims=True)

        t = target_indices.data.flatten()
        p = softmax_output.reshape(len(t), -1)
        target_dist = np.eye(p.shape[1])[t]
        loss = -(np.log(p) * (target_dist)).sum(1).mean()

        if (self.autograd):
            out = Tensor(loss,
                         autograd=True,
                         creators=[self],
                         creation_op="cross_entropy")
            out.softmax_output = softmax_output
            out.target_dist = target_dist
            return out

        return Tensor(loss)

    def __repr__(self):
        return str(self.data.__repr__())

    def __str__(self):
        return str(self.data.__str__())
class Layer(object):

    def __init__(self):
        self.parameters = list()

    def get_parameters(self):
        return self.parameters

class Tanh(Layer):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        return input.tanh()


class Sigmoid(Layer):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        return input.sigmoid()


class CrossEntropyLoss(object):

    def __init__(self):
        super().__init__()

    def forward(self, input, target):
        return input.cross_entropy(target)
class Sequential(Layer):

    def __init__(self, layers=list()):
        super().__init__()

        self.layers = layers

    def add(self, layer):
        self.layers.append(layer)

    def forward(self, input):
        for layer in self.layers:
            input = layer.forward(input)
        return input

    def get_parameters(self):
        params = list()
        for l in self.layers:
            params += l.get_parameters()
        return params
class Embedding(Layer):

    def __init__(self, vocab_size, dim):
        super().__init__()

        self.vocab_size = vocab_size
        self.dim = dim

        # this random initialiation style is just a convention from word2vec
        self.weight = Tensor((np.random.rand(vocab_size, dim) - 0.5) / dim, autograd=True)

        self.parameters.append(self.weight)

    def forward(self, input):
        return self.weight.index_select(input)

class Linear(Layer):

    def __init__(self, n_inputs, n_outputs):
        super().__init__()
        W = np.random.randn(n_inputs, n_outputs) * np.sqrt(2.0 / (n_inputs))
        self.weight = Tensor(W, autograd=True)
        self.bias = Tensor(np.zeros(n_outputs), autograd=True)

        self.parameters.append(self.weight)
        self.parameters.append(self.bias)

    def forward(self, input):
        return input.mm(self.weight) + self.bias.expand(0, len(input.data))

class MSELoss(Layer):

    def __init__(self):
        super().__init__()

    def forward(self, pred, target):
        return ((pred - target) * (pred - target)).sum(0)
class SGD(object):

    def __init__(self, parameters, alpha=0.1):
        self.parameters = parameters
        self.alpha = alpha

    def zero(self):
        for p in self.parameters:
            p.grad.data *= 0

    def step(self, zero=True):

        for p in self.parameters:

            p.data -= p.grad.data * self.alpha

            if (zero):
                p.grad.data *= 0


class RNNCell(Layer):

    def __init__(self, n_inputs, n_hidden, n_output, activation='sigmoid'):
        super().__init__()

        self.n_inputs = n_inputs
        self.n_hidden = n_hidden
        self.n_output = n_output

        if (activation == 'sigmoid'):
            self.activation = Sigmoid()
        elif (activation == 'tanh'):
            self.activation == Tanh()
        else:
            raise Exception("Non-linearity not found")

        self.w_ih = Linear(n_inputs, n_hidden)
        self.w_hh = Linear(n_hidden, n_hidden)
        self.w_ho = Linear(n_hidden, n_output)

        self.parameters += self.w_ih.get_parameters()
        self.parameters += self.w_hh.get_parameters()
        self.parameters += self.w_ho.get_parameters()

    def forward(self, input, hidden):
        from_prev_hidden = self.w_hh.forward(hidden)
        combined = self.w_ih.forward(input) + from_prev_hidden
        new_hidden = self.activation.forward(combined)
        output = self.w_ho.forward(new_hidden)
        return output, new_hidden

    def init_hidden(self, batch_size=1):
        return Tensor(np.zeros((batch_size, self.n_hidden)), autograd=True)


import sys, random, math
from collections import Counter
import numpy as np

f = open('qa1_single-supporting-fact_train.txt', 'r')
raw = f.readlines()
f.close()

tokens = list()
for line in raw[0:1000]:
    tokens.append(line.lower().replace("\n", "").split(" ")[1:])

new_tokens = list()
for line in tokens:
    new_tokens.append(['-'] * (6 - len(line)) + line)

tokens = new_tokens

vocab = set()
for sent in tokens:
    for word in sent:
        vocab.add(word)

vocab = list(vocab)

word2index = {}
for i, word in enumerate(vocab):
    word2index[word] = i


def words2indices(sentence):
    idx = list()
    for word in sentence:
        idx.append(word2index[word])
    return idx


indices = list()
for line in tokens:
    idx = list()
    for w in line:
        idx.append(word2index[w])
    indices.append(idx)

data = np.array(indices)

embed = Embedding(vocab_size=len(vocab),dim=16)
model = RNNCell(n_inputs=16, n_hidden=16, n_output=len(vocab))

criterion = CrossEntropyLoss()
optim = SGD(parameters=model.get_parameters() + embed.get_parameters(), alpha=0.05)

for iter in range(1000):
    batch_size = 100
    total_loss = 0

    hidden = model.init_hidden(batch_size=batch_size)

    for t in range(5):
        input = Tensor(data[0:batch_size, t], autograd=True)
        rnn_input = embed.forward(input=input)
        output, hidden = model.forward(input=rnn_input, hidden=hidden)

    target = Tensor(data[0:batch_size, t + 1], autograd=True)
    loss = criterion.forward(output, target)
    loss.backward()
    optim.step()
    total_loss += loss.data
    if (iter % 200 == 0):
        p_correct = (target.data == np.argmax(output.data, axis=1)).mean()
        print("Loss:", total_loss / (len(data) / batch_size), "% Correct:", p_correct)

batch_size = 1
hidden = model.init_hidden(batch_size=batch_size)
for t in range(5):
    input = Tensor(data[0:batch_size,t], autograd=True)
    rnn_input = embed.forward(input=input)
    output, hidden = model.forward(input=rnn_input, hidden=hidden)

target = Tensor(data[0:batch_size,t+1], autograd=True)
loss = criterion.forward(output, target)

ctx = ""
for idx in data[0:batch_size][0][0:-1]:
    ctx += vocab[idx] + " "
print("Context:",ctx)
print("True:",vocab[target.data[0]])
print("Pred:", vocab[output.data.argmax()])


''' 第一次
Loss: 0.4680828278085011 % Correct: 0.0
Loss: 0.17895626941023882 % Correct: 0.23
Loss: 0.1606657974044729 % Correct: 0.3
Loss: 0.1481854218501178 % Correct: 0.32
Loss: 0.13960603129533444 % Correct: 0.35
Context: - mary moved to the 
True: bathroom.
Pred: bathroom.
'''

'''第二次
Loss: 0.4554923906553056 % Correct: 0.01
Loss: 0.17450458457970364 % Correct: 0.23
Loss: 0.1537305632182028 % Correct: 0.33
Loss: 0.13882016326307411 % Correct: 0.36
Loss: 0.13465901151417053 % Correct: 0.37
Context: - mary moved to the 
True: bathroom.
Pred: office.
'''

'''第三次
Loss: 0.45696131353100666 % Correct: 0.12
Loss: 0.17446651127257118 % Correct: 0.27
Loss: 0.16225291144270232 % Correct: 0.28
Loss: 0.1417173151945064 % Correct: 0.34
Loss: 0.13637942677769582 % Correct: 0.37
Context: - mary moved to the 
True: bathroom.
Pred: hallway.
'''

'''第四次
Loss: 0.4449260906841651 % Correct: 0.0
Loss: 0.1782109486619849 % Correct: 0.23
Loss: 0.1496331404381601 % Correct: 0.35
Loss: 0.14350842163988237 % Correct: 0.34
Loss: 0.13665930525935824 % Correct: 0.37
Context: - mary moved to the 
True: bathroom.
Pred: hallway.
'''

'''第五次
Loss: 0.45827573579339315 % Correct: 0.0
Loss: 0.1756007557865982 % Correct: 0.23
Loss: 0.15933848432214442 % Correct: 0.31
Loss: 0.142949504390499 % Correct: 0.34
Loss: 0.13783751879604417 % Correct: 0.35
Context: - mary moved to the 
True: bathroom.
Pred: office.
'''

'''
总结:虽然预测值和真实值有差距,但是在整体的句式上是正确的。填写的次是一个正确的词,不想以前那么的混乱了。
'''

你可能感兴趣的:(深度学习-自学之路,深度学习,rnn,人工智能)