在数字化浪潮中,数字人正成为创新应用的焦点。从虚拟偶像活跃于舞台,到虚拟客服在各行业的普及,数字人展现出巨大的潜力。搭建数字人源码系统,是融合多领域前沿技术的复杂工程,涵盖图形学、人工智能、语音处理等。本文将深入剖析数字人源码搭建的技术开发细节,为开发者提供全面且深入的技术指南。
import kaldiio
import numpy as np
from kaldi.asr import GmmHmmDecodeGraph, Nnet3LatticeFasterRecognizer
from kaldi.decoder import LatticeFasterDecoderOptions
from kaldi.fstext import SymbolTable
from kaldi.matrix import Matrix
from kaldi.util.options import ParseOptions
from kaldi.util.table import SequentialMatrixReader, CompactLatticeWriter
def kaldi_speech_recognition():
# 加载模型和配置文件
model_path = "path/to/your/model.mdl"
graph_path = "path/to/your/HCLG.fst"
words_sym_table_path = "path/to/your/words.txt"
feature_rspecifier = "ark:compute-mfcc-feats --config=path/to/your/mfcc.conf scp:path/to/your/audio.scp ark:- |"
decoder_opts = LatticeFasterDecoderOptions()
decoder_opts.beam = 10.0
decoder_opts.max_active = 7000
decoder_opts.min_active = 200
decoder_opts.acoustic_scale = 0.1
words_sym_table = SymbolTable.read_text(words_sym_table_path)
model = Nnet3LatticeFasterRecognizer.from_files(model_path, graph_path)
decoder = GmmHmmDecodeGraph(model, decoder_opts)
with SequentialMatrixReader(feature_rspecifier) as feature_reader:
for key, features in feature_reader:
feats = Matrix(features)
decoder.decode(feats)
best_path = decoder.get_best_path()
best_path_symbols = [words_sym_table.find(i) for i in best_path.words]
recognized_text = " ".join(best_path_symbols)
print(f"音频 {key} 识别结果: {recognized_text}")
if __name__ == "__main__":
kaldi_speech_recognition()
import cv2
import numpy as np
from keras.models import load_model
# 加载预训练的表情识别模型
model = load_model('emotion_model.h5')
emotion_labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
# 加载人脸检测器
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
def detect_and_predict_emotion(frame):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor = 1.1, minNeighbors = 5, minSize = (30, 30))
for (x, y, w, h) in faces:
face_roi = gray[y:y + h, x:x + w]
face_roi = cv2.resize(face_roi, (48, 48))
face_roi = np.expand_dims(face_roi, axis = 0)
face_roi = np.expand_dims(face_roi, axis = -1)
face_roi = face_roi / 255.0
predictions = model.predict(face_roi)[0]
max_index = np.argmax(predictions)
emotion = emotion_labels[max_index]
cv2.putText(frame, emotion, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
return frame
# 读取视频流
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
frame = detect_and_predict_emotion(frame)
cv2.imshow('Emotion Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()