- Uncovering Bias in Large Vision-Language Models at Scale with Counterfactuals
樱花的浪漫
因果推断大模型与智能体人工智能算法机器学习语言模型自然语言处理
UncoveringBiasinLargeVision-LanguageModelsatScalewithCounterfactuals-ACLAnthologyhttps://aclanthology.org/2025.naacl-long.305/1.概述最近,大型视觉-语言模型(LVLMs)因其能够将语言模型(LLMs)的对话能力扩展到多模态领域而受到欢迎。具体来说,LVLMs可以根据文本提
- LLaMA-Factory微调教程1:LLaMA-Factory安装及使用
Cachel wood
LLM和AIGCllamapython开发语言react.jsjavascript前端microsoft
文章目录环境搭建LLaMA-Factory安装教程模型大小选择环境搭建Windows系统RTX4060Ti(16G显存)python3.10cuda=12.6cudnntorch==2.7.1+cu126torchvision==0.22.1+cu126torchaudio==2.7.1+cu126PSC:\Users\18098>nvidia-smiTueJul2201:52:192025+<
- 删除我的电脑中“C盘瘦身专家”图标(流氓软件)
用联想电脑管家强制先卸载掉该软件,然后以管理员身份打开注册表(regedit)跳转到注册路径:计算机\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\MyComputer找到包含“C盘瘦身专家”得注册表项,然后直接删除,刷新桌面浏览器,就可以看到图标被删除了,国内做好软件不行,搞流氓软件倒是有一绝,正常从市场
- 躁动是别人的,你是坚定的。
无梦为安Ph
(2002,text2)Butifrobotsaretoreachthenextstageoflaborsavingutility,theywillhavetooperatewithlesshumansupervisionandbeabletomakeatleastafewdecisionsforthemselves—goalsthatposearealchallenge.句子结构条件状语从句:B
- XCZU4EV-1FBVB900E Xilinx FPGA AMD Zynq UltraScale+ MPSoC EV(Embedded Vision)
XINVRY-FPGA
arm开发fpga开发fpga嵌入式硬件硬件工程计算机视觉硬件架构
XCZU4EV-1FBVB900EXCZU4EV‑2FBVB900E属于AMD(Xilinx)ZynqUltraScale+MPSoCEV(EmbeddedVision)系列,集成四核Arm®Cortex‑A53应用处理器、双核Cortex‑R5F实时处理器与Mali‑400MP2片上GPU,辅以强大的可编程逻辑和海量DSP引擎。该器件面向视频嵌入式视觉、网络通信、工业自动化和高级数据处理等对图形
- 【MMCV】MMCV安装与踩坑
Elendill
Pyhtonpytorchpythonmmcv
确认MMCV版本首先确认项目所需MMCV的版本是多少mmcv2.0版本的代码相比较于=2.0.0安装方法新创建一个conda环境安装pytorch:condainstallpytorchtorchvisiontorchaudiopytorch-cuda=11.8-cpytorch-cnvidia安装mim,这是openmm官方推出的用于安装他们旗下mm系列产品的安装器:pipinstall-Uop
- 【代码问题】【模型部署】部署千问时,ImportError: Cannot import available module of Qwen2_5_VLForConditionalGeneration
Catching Star
pythonpytorch开发语言
多半是环境的问题,最主要的是python版本要高python==3.12.9accelerate==1.8.1pipinstallqwen-vl-utils[decord]==0.0.8peft==0.14.0transformers==4.52.3torch==2.7.0torchvision==0.22.0modelscope==1.27.1
- ES6中实用且高频的前端核心知识点(10个) - 附示例
Web - Anonymous
ES6es6前端ecmascript
ES6:全称为ECMAScript6,是ECMAScript的第6版本,是JavaScript语言的下一代标准,2015年6月正式发布。ECMAScript是一种由Ecma国际(前身为欧洲计算机制造商协会,EuropeanComputerManufacturersAssociation)在标准ECMA-262中定义的脚本语言规范。目录1、块级作用域变量(let/const)2、箭头函数(简化thi
- LabVIEW图像处理与OCR综合实践
咸鱼cc
本文还有配套的精品资源,点击获取简介:本压缩包“图像VI.zip”提供了与图像处理和OCR技术相关的LabVIEW子VI,涵盖了从摄像头获取图像到OCR处理的全套功能。LabVIEW是美国国家仪器公司开发的图形化编程工具,适用于数据采集、测量和控制应用。该课程将指导学生如何使用LabVIEW的“VisionAcquisition”库进行图像采集,并通过相关子VI实现连续或单帧图像的获取。同时,讲解
- 多功能计算器:加减乘除与三角函数的结合
索拉里斯最强共鸣者
python
importmathdefadd(x,y):returnx+ydefsubtract(x,y):returnx-ydefmultiplication(x,y):returnx*ydefdivision(x,y):ify==0:return"错误:除数不能为0"returnx/ydefsin(angle):returnmath.sin(math.radians(angle))defcos(angle
- 基于深度学习的食管癌右喉返神经旁淋巴结预测系统研究
神经网络15044
算法python深度学习人工智能神经网络算法图像处理
基于深度学习的食管癌右喉返神经旁淋巴结预测系统研究摘要本研究旨在构建一个综合深度学习系统,通过整合2D、2.5D和3DVisionMamba模型以及CT增强和弹性成像技术,准确预测食管癌患者的右喉返神经旁淋巴结转移情况。我们设计了双分支融合架构,对比分析了不同模型组合的性能,并通过决策级融合整合了临床模型、影像组学模型以及深度学习模型的预测结果。实验结果表明,我们的综合融合模型在敏感性和特异性上均
- ITIL 4 DPI:愿景与使命的分野与协同——组织战略传导的第一步
一、愿景与使命的基本定义与区别在ITIL4的框架下,我们讨论了组织战略传导的核心要素,其中“愿景”和“使命”是两个至关重要的组成部分。很多学员在课堂上提出了关于这两者之间差异的问题,其实,这两者在功能和作用上存在显著区别。简单来说,愿景关注的是组织未来的发展方向,而使命则强调的是组织当前所做的事情及其目的。愿景(Vision):愿景描述的是组织希望在未来成为什么样的存在,它传达的是组织的“意义”和
- ubuntu22.04.4锁定内核应对海光服务器升级内核无法启动问题
大新新大浩浩
运维知识-ubuntu服务器运维
文章目录一、场景二、机器信息1.内核信息2.CPU信息三、锁定内核总结ubuntu锁定内核的操作记录一、场景项目上来了几台海光的服务器,操作系统是ubuntu2204的,就尝试这安装服务,发现安装的时候内核会自动升级,升级之后新内核无法正常引导启动。进行锁内核的操作。二、机器信息1.内核信息hostnamectl:Statichostname:XXXIconname:computer-server
- 2025年入局苹果Vision Pro开发:从零到发布的完整路线图
花生糖@
苹果眼镜(Visionapplevisionpro
苹果VisionPro的发布标志着空间计算(SpatialComputing)进入主流市场。作为开发者,如何快速掌握visionOS开发?本文将为你提供详细的路线图、实践建议与资源指南,涵盖从窗口式应用到沉浸式3D应用的完整开发路径。一、visionOS开发的核心目标与阶段划分visionOS的开发可分为两个阶段:Window-Based(窗口式)应用开发学习Swift与SwiftUI,构建基础U
- 机器学习资源
SimpleUmbrella
以下是根据不同语言类型和应用领域收集的各类工具库,持续更新中。C通用机器学习Recommender-一个产品推荐的C语言库,利用了协同过滤.计算机视觉CCV-C-based/Cached/CoreComputerVisionLibrary,是一个现代化的计算机视觉库。VLFeat-VLFeat是开源的computervisionalgorithms库,有Matlabtoolbox。C++计算机视觉
- 2025暑期—07YOLO-YOLOV11
宇称不守恒4.0
人工智能图像处理YOLO深度学习人工智能
安装的环境包括YoloV11,torch2.32.4Clip1.0D2LOpenCV4.12等安装1Conda环境安装YOLOcondacreate--prefix=D:/YOLO11/yolo11_envpython=3.10condaactivateD:\YOLO11\yolo11_envPytorch网站确定condainstallpytorch==2.3.0torchvision==0.1
- 半导体 CIM(计算机集成制造)系统
快乐的划水a
ATE设备制造集成测试
半导体CIM(ComputerIntegratedManufacturing,计算机集成制造)系统是半导体制造的“神经中枢”,通过整合硬件设备、软件系统和数据流转,实现从订单到成品的全流程自动化、信息化和智能化管理。其工作流程高度贴合半导体制造的复杂性(多工序、高精度、高洁净度、长周期),可分为订单接收与计划制定、生产准备、生产执行、实时监控与质量管控、成品测试与出货、数据闭环与持续改进六大核心阶
- 第N8周:使用Word2vec实现文本分类
weixin_42245644
word2vec人工智能自然语言处理
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、数据预处理1.加载数据importtorchimporttorch.nnasnnimporttorchvisionfromtorchvisionimporttransforms,datasetsimportos,PIL,pathlib,warningswarnings.filterwarnings("ignore")#忽略警告信息#w
- 【1】计算机视觉方法(更新)
annaPresident
计算机视觉计算机视觉人工智能
1计算机是视觉的定义和任务计算机视觉(ComputerVision,CV)是人工智能领域的分支,旨在通过算法让计算机从图像或视频中提取信息、理解内容并做出决策。其核心任务是模拟人类视觉系统,实现场景理解、目标检测、图像分类等功能。2传统CV解决问题的步骤和方法步骤对图片、视频进行预处理,增强对比度,灰度化,变形等特征提取,边缘、角点、纹理等分割,通过阈值进行分割,分别处理形态学处理,通过膨胀、腐蚀
- 《Qwen2-VL》论文精读【上】:发表于2024年10月 Qwen2-VL 迅速崛起 | 性能与GPT-4o和Claude3.5相当
OpenAppAI
多模态大模型Qwen2-VL
1、论文地址Qwen2-VL:EnhancingVision-LanguageModel’sPerceptionoftheWorldatAnyResolution2、Qwen2-VL的Github仓库地址该论文发表于2024年4月,是Qwen2-VL的续作,截止2024年11月,引用数24文章目录1论文摘要2引言3实验3.1与SOTA相比3.2定量结果3.2.1通用视觉问答3.2.1.12024年
- 中国计算机学会(CCF)推荐学术会议-C(网络与信息安全):ACM ASIACCS 2026
爱思德学术
网络安全信息与通信密码学
ACMASIACCS2026BuildingonthesuccessofACMConferenceonComputerandCommunicationsSecurity(CCS),theACMSpecialInterestGrouponSecurity,Audit,andControl(SIGSAC)formallyestablishedtheannualACMAsiaConferenceonCo
- 三星数据被黑客泄露、罗马尼亚加油站网络遭勒索攻击|3月8日全球网络安全热点
腾讯安全
网络安全
安全资讯报告攻击英伟达的黑客泄露了三星数据据报道,攻击并泄露Nvidia的黑客组织LAPSUS$发布了它所描述的“三星机密源代码”。该黑客组织此前曾从Nvidia窃取机密信息。BleepingComputer报告称,LAPSUS$泄露了近190GB的数据,据称其中包括TrustZone环境使用的受信任小程序的源代码、最近三星设备的引导加载程序以及与三星帐户相关的技术等。LAPSUS$声称也泄露了“
- 机器学习算法解析:XGBoost与LightGBM
AI天才研究院
AI人工智能与大数据AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习算法解析:XGBoost与LightGBM作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:XGBoost,LightGBM,高效特征选择,并行化训练,自动调参,弱分类器集成1.背景介绍1.1问题的由来随着数据科学和人工智能技术的发展,越来越多的问题需要利用机器学习算法进行解决。传统的一维决策树虽然直观且易于理解,但在面对高维度数据集时
- OpenCV —— contours_matrix_()_[]
大魔王(已黑化)
visionopencv人工智能计算机视觉
️️️️Takeyourtime!️️️️个人主页:大魔王所属专栏:魔王的修炼之路–Computervision如果你觉得这篇文章对你有帮助,请在文章结尾处留下你的点赞和关注,支持一下博主。同时记得收藏✨这篇文章,方便以后重新阅读。文章目录检测轮廓numpy创建矩阵与数组三种图像的区别及转换()与[]应用检测轮廓importcv2importnumpyasnpcv2.namedWi
- OpenCV —— color_matrix_numpy_mat_reshape
大魔王(已黑化)
visionopencvnumpy人工智能
️️️️Takeyourtime!️️️️个人主页:大魔王所属专栏:魔王的修炼之路–Computervision如果你觉得这篇文章对你有帮助,请在文章结尾处留下你的点赞和关注,支持一下博主。同时记得收藏✨这篇文章,方便以后重新阅读。文章目录颜色空间解释numpy与颜色空间图像的本质三种图像总结numpy本质Matnp.ndarray彩色图像灰度图像二值图像NumPy主要能干啥?re
- 论文笔记:EMR-MERGING: Tuning-Free High-Performance Model Merging
UQI-LIUWJ
论文笔记论文阅读
2024neurips1intro随着HuggingFace、timm和torchvision等开源仓库的发展,预训练与微调模型的数量激增,这导致模型部署的存储和成本负担加重。多任务学习(MTL)通过联合训练多数据集来部分缓解上述问题,但它存在以下缺陷:(i)计算成本高;(ii)隐私数据限制导致数据不可获取因此,近年来出现了**模型融合(modelmerging)**方法,试图通过权重合并的方式绕
- 卷积神经网络实现猫狗分类
新手且大师
cnn分类人工智能
一.环境配置以及数据加载importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorchvision.transformsastransformsfromtorchvision.datasetsimportImageFolderfromtorch.utils.dataimportDataLoaderimportmatplotlib.p
- AI系统Spark原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI系统Spark原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Spark、大数据处理、分布式计算、机器学习、数据挖掘、实时流处理1.背景介绍1.1问题的由来在大数据时代,海量数据的高效处理和分析已成为各行各业的迫切需求。传统的数据处理方式难以应对数据量激增、数据类型多样化以及实时性要求高等挑战。为了解决这些问题,Ap
- 网络分层模型和TCP/IP协议族 —— 以太网
zhangjingbibibi
网络分层模型和TCP/IP协议——以太网以太网其实讲的就是:怎么传IP协议讲的就是:解决往哪里传的问题UDP和TCP:解决可靠性的问题怎么传输的?最初是通过同轴电缆。image.png然后发现了一种算法来解决这个问题。CSMA/CD也就是载波监听多路访问/冲突检测我用大白话来讲解一下,大概就是这样的:一条同轴电缆上,串联着许多台计算机,如果说computerA想发送数据(data),那么它会这样做
- 粘的ScalersTalk第七轮新概念朗读持续力训练Day 76 211229
粘_NIAN
练习材料:Lesson76AprilFoolsDay'Toendourspecialnewsbulletin,'saidthevoiceofthetelevisionannouncer,'wearegoingovertothemacaronifieldsofCalabria.Macaronihasbeengrowninthisareaforoversixhundredyears.Twoofthel
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,