欢迎来到本博客❤️❤️
博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
本文目录如下:
目录
⛳️赠与读者
1 概述
分布式电源对配电网故障定位的影响研究
一、分布式电源的特点及其对配电网的影响
二、传统故障定位方法的局限性
三、分布式电源接入后的故障定位改进方案
四、未来研究方向
五、结论
2 运行结果
3 参考文献
4 Python代码实现
做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......
人类在日常生活中越来越依赖电力,使用需要电力的设备不再是奢侈品,而是成为必需品。负责向民众提供这种资源的各方必须处理电力的生产、传输和分配问题。尽管过去几十年在电力系统保护方面取得了许多进展,但在提高能源供应服务的连续性方面仍有很大的空间。在配电的背景下,以巴西为例,可以通过配电服务的连续性指标来量化消费者的电力供应质量。国家电能署 (Aneel) 在 [PRODIST 2012] 中提供了其中两个指标,即每用电单位的等效中断持续时间 (DEC) 和每用电单位的等效中断频率 (FEC)。 DEC 是通过在计算期间内,相关用电单位的电能分配服务中断的平均值获得的时间间隔。 FEC 是在所考虑的单位中发生这种不连续性的平均频率。
本文旨在确定分布式光伏发电对径向配电网络故障定位的影响。光伏系统的尺寸针对该电路的穿透限制而定。在 OpenDSS 上执行故障模拟,以获取变电站的电压和电流值。这些结果记录在数据库中并用于训练多层感知器类的神经网络,该网络能够以 90% 的平均成功率确定电路中存在或不存在分布式光伏发电的 6 个可能地理区域之间的故障位置。
MLP
MLP 是一种分层工作的神经网络。输入层接收问题输入,中间隐藏层执行映射操作,输出层提供输出,如图 1.1 所示。模拟神经元的基本层单元称为感知器。除了感知器,输入层和中间层还有一个偏置节点,用于处理等于 0 的输入。
作为补充,基于 [Goodfellow et al. 2016],MLP 只是一个函数 y = f(x; θ),它使用优化的 θ 参数将输入 x 映射到输出 y。可以说,根据 [Géron 2017] 一书,感知器的工作原理是对其输入进行加权求和,并根据其符号离散化该总和的值,如等式所示
作为补充,MLP 只是一个函数 y = f(x; θ),它使用优化的 θ 参数将输入 x 映射到输出 y。可以说,感知器的工作原理是对其输入进行加权求和,并根据其符号离散化该总和的值,如等式所示:
其中 hw 是感知器的输出,x 是输入值,w 是分配给每个输入的权重,step 是和值的离散化函数,可以是 Heaviside 函数或信号函数。
调整 MLP 权重的方法之一是通过反向传播技术。该机制包括,在确定神经网络的正向权重及其总误差后,反向计算每个权重的误差贡献,提出在每次迭代中总误差较小的新权重。为了使这种方法可行,激活函数,即传统感知器结构中的阶跃函数,必须用平滑函数代替,例如逻辑函数、双曲正切函数或整流线性单位函数(ReLU ),如等式所示:
其中 hw,b(x) 是 ReLU 函数,b 是偏差值。此外,通过计算函数梯度的反向传播方法可以使用随机梯度下降进行优化。
目标
本文旨在确定分布式光伏发电对径向配电网络故障定位的影响。光伏系统的尺寸针对该电路的穿透限制而定。在 OpenDSS 上执行故障模拟,以获取变电站的电压和电流值。这些结果记录在数据库中并用于训练多层感知器类的神经网络,该网络能够以 90% 的平均成功率确定电路中存在或不存在分布式光伏发电的 6 个可能地理区域之间的故障位置。总体目标是验证GDFV在配电系统故障定位中的影响。支持主要目标的次要目标是:为配电馈线在其穿透极限下设计不同的光伏系统,并评估其功率流;模拟负荷曲线不同点处配电馈线所有母线的故障。实施能够检测故障并将其分类为类型、电阻和地理位置的算法。
定义与分类
分布式电源(Distributed Generation, DG)是指分散布置在用户侧或负荷中心的小型发电系统,容量范围通常为数千瓦至数十兆瓦,包括光伏、风电、燃气轮机、燃料电池等技术类型。其核心特点是:就近供电、环保高效、灵活接入配电网(10kV及以下电压等级,单点容量不超过6MW)。
对配电网结构的改变
DG的接入使配电网从传统的单电源辐射状结构转变为多电源复杂网络,导致潮流方向由单向变为多向。例如,当故障发生时,主电网与多个DG可能同时向故障点注入电流,显著改变了短路电流的分布特征。
关键影响机制
传统方法分类
具体挑战
技术融合策略
工程应用案例
分布式电源的接入对配电网故障定位提出了多维挑战,但也推动了定位技术的革新。通过算法优化(如智能优化、矩阵修正)、技术融合(边缘计算、行波协同)以及工程策略(容量限制、动态方向定义),可有效提升定位精度与适应性。未来需重点关注不确定性建模与标准化建设,以支撑高比例可再生能源配电网的可靠运行。
部分代码:
def plot_5_pv():
ckt24_plot()
substation, = pylab.plot([11735514.42],[3709460.816],'k^',
markersize=10, label='Substation')
pvsyst, = pylab.plot(
[11740361.09,11745683.27,11740622.95,11740594.66,11735219.81],
[3709237.782,3712746.259,3714771.12,3718243.191,3718067.52],
color='orange', marker='s', markersize=10, linestyle='None',
label='PV System')
blue_patch = mpatches.Patch(color='blue', label='Three-phase lines')
green_patch = mpatches.Patch(color='green', label='Two-phase lines')
red_patch = mpatches.Patch(color='red', label='One-phase lines')
pylab.legend(handles=[substation, pvsyst, blue_patch, green_patch,
red_patch])
pylab.title("5 PV systems")
pylab.show()
def plot_5_pv():
ckt24_plot()
substation, = pylab.plot([11735514.42],[3709460.816],'k^',
markersize=10, label='Substation')
pvsyst, = pylab.plot(
[11740361.09,11745683.27,11740622.95,11740594.66,11735219.81],
[3709237.782,3712746.259,3714771.12,3718243.191,3718067.52],
color='orange', marker='s', markersize=10, linestyle='None',
label='PV System')
blue_patch = mpatches.Patch(color='blue', label='Three-phase lines')
green_patch = mpatches.Patch(color='green', label='Two-phase lines')
red_patch = mpatches.Patch(color='red', label='One-phase lines')
pylab.legend(handles=[substation, pvsyst, blue_patch, green_patch,
red_patch])
pylab.title("5 PV systems")
pylab.show()
def plot_5_pv():
ckt24_plot()
substation, = pylab.plot([11735514.42],[3709460.816],'k^',
markersize=10, label='Substation')
pvsyst, = pylab.plot(
[11740361.09,11745683.27,11740622.95,11740594.66,11735219.81],
[3709237.782,3712746.259,3714771.12,3718243.191,3718067.52],
color='orange', marker='s', markersize=10, linestyle='None',
label='PV System')
blue_patch = mpatches.Patch(color='blue', label='Three-phase lines')
green_patch = mpatches.Patch(color='green', label='Two-phase lines')
red_patch = mpatches.Patch(color='red', label='One-phase lines')
pylab.legend(handles=[substation, pvsyst, blue_patch, green_patch,
red_patch])
pylab.title("5 PV systems")
pylab.show()
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]翁海霞,周超,冯尚庆.分布式电源接入对配电网故障定位的影响分析[J].商品与质量, 2016, 000(003):319-319.
[2]刘健,张志华,黄炜,等.分布式电源接入对配电网故障定位及电压质量的影响分析[J].电力建设, 2015(1):7.
[3]刘高峰.分布式电源接入对配电网故障定位及电压质量的影响探析[J].信息周刊, 2019(20):1.
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取