以下将分别使用 PyTorch 和 TensorFlow 框架实现基于深度学习的情感分析,这里以影评的情感分析为例,数据集使用 IMDB 影评数据集。
pip install torch torchtext spacy
python -m spacy download en_core_web_sm
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.legacy import data, datasets
import spacy
# 设置随机种子以保证结果可复现
SEED = 1234
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
# 加载英语分词器
spacy_en = spacy.load('en_core_web_sm')
# 定义分词函数
def tokenize_en(text):
return [tok.text for tok in spacy_en.tokenizer(text)]
# 定义字段
TEXT = data.Field(tokenize=tokenize_en, lower=True)
LABEL = data.LabelField(dtype=torch.float)
# 加载 IMDB 数据集
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)
# 划分验证集
train_data, valid_data = train_data.split(random_state=torch.manual_seed(SEED))
# 构建词汇表
MAX_VOCAB_SIZE = 25000
TEXT.build_vocab(train_data, max_size=MAX_VOCAB_SIZE)
LABEL.build_vocab(train_data)
# 创建迭代器
BATCH_SIZE = 64
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size=BATCH_SIZE,
device=device)
# 定义模型
class RNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.rnn = nn.LSTM(embedding_dim,
hidden_dim,
num_layers=n_layers,
bidirectional=bidirectional,
dropout=dropout)
self.fc = nn.Linear(hidden_dim * 2 if bidirectional else hidden_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, text):
embedded = self.dropout(self.embedding(text))
output, (hidden, cell) = self.rnn(embedded)
if self.rnn.bidirectional:
hidden = self.dropout(torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1))
else:
hidden = self.dropout(hidden[-1, :, :])
return self.fc(hidden.squeeze(0))
# 初始化模型
INPUT_DIM = len(TEXT.vocab)
EMBEDDING_DIM = 100
HIDDEN_DIM = 256
OUTPUT_DIM = 1
N_LAYERS = 2
BIDIRECTIONAL = True
DROPOUT = 0.5
model = RNN(INPUT_DIM, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS, BIDIRECTIONAL, DROPOUT)
model = model.to(device)
# 定义优化器和损失函数
optimizer = optim.Adam(model.parameters())
criterion = nn.BCEWithLogitsLoss()
criterion = criterion.to(device)
# 训练模型
def train(model, iterator, optimizer, criterion):
model.train()
epoch_loss = 0
for batch in iterator:
optimizer.zero_grad()
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator)
# 评估模型
def evaluate(model, iterator, criterion):
model.eval()
epoch_loss = 0
with torch.no_grad():
for batch in iterator:
predictions = model(batch.text).squeeze(1)
loss = criterion(predictions, batch.label)
epoch_loss += loss.item()
return epoch_loss / len(iterator)
# 训练模型
N_EPOCHS = 5
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
train_loss = train(model, train_iterator, optimizer, criterion)
valid_loss = evaluate(model, valid_iterator, criterion)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'tut1-model.pt')
print(f'Epoch: {epoch + 1:02}')
print(f'\tTrain Loss: {train_loss:.3f}')
print(f'\t Val. Loss: {valid_loss:.3f}')
# 在测试集上评估模型
model.load_state_dict(torch.load('tut1-model.pt'))
test_loss = evaluate(model, test_iterator, criterion)
print(f'Test Loss: {test_loss:.3f}')
torchtext
加载 IMDB 数据集,定义分词函数和字段,构建词汇表,创建数据迭代器。BCEWithLogitsLoss
损失函数进行训练,在验证集上选择最佳模型,最后在测试集上评估模型性能。pip install tensorflow
import tensorflow as tf
from tensorflow.keras.datasets import imdb
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense
# 加载 IMDB 数据集
vocab_size = 10000
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=vocab_size)
# 填充序列
max_length = 200
train_data = pad_sequences(train_data, maxlen=max_length)
test_data = pad_sequences(test_data, maxlen=max_length)
# 构建模型
model = Sequential([
Embedding(vocab_size, 16),
LSTM(32),
Dense(1, activation='sigmoid')
])
# 编译模型
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(train_data, train_labels, epochs=5, batch_size=64, validation_split=0.2)
# 在测试集上评估模型
test_loss, test_acc = model.evaluate(test_data, test_labels)
print(f'Test accuracy: {test_acc}')
imdb.load_data
加载 IMDB 数据集,对序列进行填充,使所有序列长度一致。Sequential
模型,包含嵌入层、LSTM 层和全连接层,使用 sigmoid
激活函数输出情感分类结果。binary_crossentropy
损失函数进行训练,在验证集上监控模型性能,最后在测试集上评估模型准确率。