本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测–数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯度下降方法介绍 1 详解梯度下降算法 线性回归 2.6 线性回归api再介绍 小结 线性回归 2.9 正则化线性模型 1 Ridge Regression (岭回归,又名 Tikhonov regularization) 逻辑回归 3.3 案例:癌症分类预测-良/恶性乳腺癌肿瘤预测 1 背景介绍 决策树算法 4.2 决策树分类原理 1 熵 决策树算法 4.3 cart剪枝 1 为什么要剪枝 决策树算法 4.4 特征工程-特征提取 1 特征提取 决策树算法 4.5 决策树算法api 4.6 案例:泰坦尼克号乘客生存预测 集成学习基础 5.1 集成学习算法简介 1 什么是集成学习 2 复习:机器学习的两个核心任务 集成学习基础 5.3 otto案例介绍 – Otto Group Product Classification Challenge 1.背景介绍 2.数据集介绍 3.评分标准 集成学习基础 5.5 GBDT介绍 1 Decision Tree:CART回归树 1.1 回归树生成算法(复习) 聚类算法 6.1 聚类算法简介 1 认识聚类算法 聚类算法 6.5 算法优化 1 Canopy算法配合初始聚类 聚类算法 6.7 案例:探究用户对物品类别的喜好细分 1 需求 第一章知识补充:再议数据分割 1 留出法 2 交叉验证法 KFold和StratifiedKFold 3 自助法 正规方程的另一种推导方式 1.损失表示方式 2.另一种推导方式 梯度下降法算法比较和进一步优化 1 算法比较 2 梯度下降优化算法 第二章知识补充: 多项式回归 1 多项式回归的一般形式 维灾难 1 什么是维灾难 2 维数灾难与过拟合 第三章补充内容:分类中解决类别不平衡问题 1 类别不平衡数据集基本介绍 向量与矩阵的范数 1.向量的范数 2.矩阵的范数 如何理解无偏估计?无偏估计有什么用? 1.如何理解无偏估计

完整笔记资料代码->: https://gitee.com/yinuo112/AI/tree/master/机器学习/嘿马机器学习(算法篇)/note.md

感兴趣的小伙伴可以自取哦~

全套教程部分目录:


部分文件图片:

线性回归

学习目标

  • 掌握线性回归的实现过程
  • 应用LinearRegression或SGDRegressor实现回归预测
  • 知道回归算法的评估标准及其公式
  • 知道过拟合与欠拟合的原因以及解决方法
  • 知道岭回归的原理及与线性回归的不同之处
  • 应用Ridge实现回归预测
  • 应用joblib实现模型的保存与加载

2.3 数学:求导

学习目标

  • 知道常见的求导方法
  • 知道导数的四则运算

1 常见函数的导数

2 导数的四则运算

3 练习

  1. y=x32x2+sinxy = x3-2x2+sinxy=x32x2+sinx,求f`(x) ​
  2. (ex+4lnx)(e^x+4lnx)(ex+4lnx)`
  3. (sinxlnx)(sinx*lnx)(sinxlnx)`
  4. (excosx)(\frac{e^x}{cosx})(cosxex)`
  5. y=sin2x, 求dydx\frac{dy}{dx}dxdy

答案:

4 矩阵(向量)求导 [了解]

参考链接:[

3 小结

  • 常见函数的求导方式和导数的四则运算

线性回归

学习目标

  • 掌握线性回归的实现过程
  • 应用LinearRegression或SGDRegressor实现回归预测
  • 知道回归算法的评估标准及其公式
  • 知道过拟合与欠拟合的原因以及解决方法
  • 知道岭回归的原理及与线性回归的不同之处
  • 应用Ridge实现回归预测
  • 应用joblib实现模型的保存与加载

2.4 线性回归的损失和优化

学习目标

  • 知道线性回归中损失函数
  • 知道使用正规方程对损失函数优化的过程
  • 知道使用梯度下降法对损失函数优化的过程

假设刚才的房子例子,真实的数据之间存在这样的关系:

登录后复制
真实关系:真实房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) + 0.254×城镇犯罪率
  • 1.

那么现在呢,我们随意指定一个关系(猜测)

登录后复制
随机指定关系:预测房子价格 = 0.25×中心区域的距离 + 0.14×城市一氧化氮浓度 + 0.42×自住房平均房价 + 0.34×城镇犯罪率
  • 1.

请问这样的话,会发生什么?真实结果与我们预测的结果之间是不是存在一定的误差呢?类似这样样子

既然存在这个误差,那我们就将这个误差给衡量出来

1 损失函数

总损失定义为:

  • yi为第i个训练样本的真实值
  • h(xi)为第i个训练样本特征值组合预测函数
  • 又称最小二乘法

如何去减少这个损失,使我们预测的更加准确些?既然存在了这个损失,我们一直说机器学习有自动学习的功能,在线性回归这里更是能够体现。这里可以通过一些优化方法去优化(其实是数学当中的求导功能)回归的总损失!!!

2 优化算法

如何去求模型当中的W,使得损失最小?(目的是找到最小损失对应的W值)

  • 线性回归经常使用的两种优化算法

    • 正规方程
    • 梯度下降法

2.1 正规方程
2.1.1 什么是正规方程

理解:X为特征值矩阵,y为目标值矩阵。直接求到最好的结果

缺点:当特征过多过复杂时,求解速度太慢并且得不到结果

2.1.2 正规方程求解举例

以下表示数据为例:

即:

运用正规方程方法求解参数:

2.1.3 正规方程的推导
  • 推导方式一:

把该损失函数转换成矩阵写法:

其中y是真实值矩阵,X是特征值矩阵,w是权重矩阵

对其求解关于w的最小值,起止y,X 均已知二次函数直接求导,导数为零的位置,即为最小值。

求导:

注:式(1)到式(2)推导过程中, X是一个m行n列的矩阵,并不能保证其有逆矩阵,但是右乘XT把其变成一个方阵,保证其有逆矩阵。

式(5)到式(6)推导过程中,和上类似。

  • 推导方式二【拓展】:

 正规方程的另一种推导方式

2.2 梯度下降(Gradient Descent)
2.2.1 什么是梯度下降

梯度下降法的基本思想可以类比为一个下山的过程。

假设这样一个场景:

一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低。

因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。

具体来说就是,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的地方走,(同理,如果我们的目标是上山,也就是爬到山顶,那么此时应该是朝着最陡峭的方向往上走)。然后每走一段距离,都反复采用同一个方法,最后就能成功的抵达山谷。

梯度下降的基本过程就和下山的场景很类似。

首先,我们有一个可微分的函数。这个函数就代表着一座山。

我们的目标就是找到这个函数的最小值,也就是山底。

根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!因为梯度的方向就是函数值变化最快的方向。 所以,我们重复利用这个方法,反复求取梯度,最后就能到达局部的最小值,这就类似于我们下山的过程。而求取梯度就确定了最陡峭的方向,也就是场景中测量方向的手段。

2.2.2 梯度的概念

梯度是微积分中一个很重要的概念

  • 在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率;

  • 在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向;

    在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。

这也就说明了为什么我们需要千方百计的求取梯度!我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着梯度的反方向一直走,就能走到局部的最低点!

2.2.3 梯度下降举例
  • 1. 单变量函数的梯度下降**

我们假设有一个单变量的函数 :J(θ) = θ2

函数的微分:J(θ) = 2θ

初始化,起点为: θ0= 1

学习率:α = 0.4

我们开始进行梯度下降的迭代计算过程:

如图,经过四次的运算,也就是走了四步,基本就抵达了函数的最低点,也就是山底

  • 2.多变量函数的梯度下降

我们假设有一个目标函数 ::J(θ) = θ12+ θ22

现在要通过梯度下降法计算这个函数的最小值。我们通过观察就能发现最小值其实就是 (0,0)点。但是接下 来,我们会从梯度下降算法开始一步步计算到这个最小值! 我们假设初始的起点为: θ0= (1, 3)

初始的学习率为:α = 0.1

函数的梯度为:▽:J(θ) =< 2θ1,2θ2>

进行多次迭代:

我们发现,已经基本靠近函数的最小值点

2.2.4 梯度下降**(**Gradient Descent)公式

  • 1) α是什么含义?

α在梯度下降算法中被称作为学习率或者步长,意味着我们可以通过α来控制每一步走的距离,以保证不要步子跨的太大扯着蛋,哈哈,其实就是不要走太快,错过了最低点。同时也要保证不要走的太慢,导致太阳下山了,还没有走到山下。所以α的选择在梯度下降法中往往是很重要的!α不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点!

  • 2) 为什么梯度要乘以一个负号

梯度前加一个负号,就意味着朝着梯度相反的方向前进!我们在前文提到,梯度的方向实际就是函数在此点上升最快的方向!而我们需要朝着下降最快的方向走,自然就是负的梯度的方向,所以此处需要加上负号

我们通过两个图更好理解梯度下降的过程

所以有了梯度下降这样一个优化算法,回归就有了"自动学习"的能力

  • 优化动态图演示

3 梯度下降和正规方程的对比

3.1 两种方法对比
梯度下降 正规方程
需要选择学习率 不需要
需要迭代求解 一次运算得出
特征数量较大可以使用 需要计算方程,时间复杂度高O(n3)

经过前面的介绍,我们发现最小二乘法适用简洁高效,比梯度下降这样的迭代法似乎方便很多。但是这里我们就聊聊最小二乘法的局限性。

  • 首先,最小二乘法需要计算XTXX^TXXTX的逆矩阵,有可能它的逆矩阵不存在,这样就没有办法直接用最小二乘法了。

    • 此时就需要使用梯度下降法。当然,我们可以通过对样本数据进行整理,去掉冗余特征。让XTXX^TXXTX的行列式不为0,然后继续使用最小二乘法。
  • 第二,当样本特征n非常的大的时候,计算XTXX^TXXTX的逆矩阵是一个非常耗时的工作(nxn的矩阵求逆),甚至不可行。

    • 此时以梯度下降为代表的迭代法仍然可以使用。
    • 那这个n到底多大就不适合最小二乘法呢?如果你没有很多的分布式大数据计算资源,建议超过10000个特征就用迭代法吧。或者通过主成分分析降低特征的维度后再用最小二乘法。
  • 第三,如果拟合函数不是线性的,这时无法使用最小二乘法,需要通过一些技巧转化为线性才能使用,此时梯度下降仍然可以用。

  • 第四,以下特殊情况,。

    • 当样本量m很少,小于特征数n的时候,这时拟合方程是欠定的,常用的优化方法都无法去拟合数据。
    • 当样本量m等于特征数n的时候,用方程组求解就可以了。
    • 当m大于n时,拟合方程是超定的,也就是我们常用与最小二乘法的场景了。
3.2 算法选择依据:
  • 小规模数据:

    • 正规方程:LinearRegression(不能解决拟合问题)
    • 岭回归
  • 大规模数据:

    • 梯度下降法:SGDRegressor

经过前面介绍,我们发现在真正的开发中,我们使用梯度下降法偏多(深度学习中更加明显),下一节中我们会进一步介绍梯度下降法的一些原理。

4 小结

  • 损失函数【知道】

    • 最小二乘法
  • 线性回归优化方法【知道】

    • 正规方程
    • 梯度下降法
  • 正规方程 – 一蹴而就【知道】

    • 利用矩阵的逆,转置进行一步求解
    • 只是适合样本和特征比较少的情况
  • 梯度下降法 — 循序渐进【知道】

    • 梯度的概念

      • 单变量 – 切线
      • 多变量 – 向量
    • 梯度下降法中关注的两个参数

      • α – 就是步长

        • 步长太小 – 下山太慢
        • 步长太大 – 容易跳过极小值点(*****)
      • 为什么梯度要加一个负号

        • 梯度方向是上升最快方向,负号就是下降最快方向
  • 梯度下降法和正规方程选择依据【知道】

    • 小规模数据:

      • 正规方程:LinearRegression(不能解决拟合问题)
      • 岭回归
    • 大规模数据:

      • 梯度下降法:SGDRegressor