- 实时数据流计算引擎Flink和Spark剖析
程小舰
flinkspark数据库kafkahadoop
在过去几年,业界的主流流计算引擎大多采用SparkStreaming,随着近两年Flink的快速发展,Flink的使用也越来越广泛。与此同时,Spark针对SparkStreaming的不足,也继而推出了新的流计算组件。本文旨在深入分析不同的流计算引擎的内在机制和功能特点,为流处理场景的选型提供参考。(DLab数据实验室w.x.公众号出品)一.SparkStreamingSparkStreamin
- native.js设置可缩放的webview并隐藏缩放控件
Nanayai
需求明确:webview页面可以手指缩放,并且不要那个原生控件;实现思路:1.使用h5+封装好的方法:设置scalable属性,并在html中设置meta标签:user-scalable=yes或不设置,minimum-scale和maximum-scale需要注意不要都设为1:mui.openWindow({url:"someThing",id:"someThing",styles:{scala
- OpenSIPS 邂逅 Kafka:构建高效 VoIP 消息处理架构
c_zyer
opensipsSIP消息队列kafkaopensipsvoip
使用场景使用步骤引入模块组装&发送数据消费数据故障转移使用场景异步日志处理:将OpenSIPS中的SIP信令日志、通话记录(CDR)等数据发送到Kafka队列中。事件通知与监控:利用OpenSIPS的event_interface模块将SIP事件(如呼叫建立、断开、注册等)推送到KafkaOpenSIPS中事件接口有以下类型:EVENT_DATAGRAM-PublishJSON-RPCnotifi
- Kafka事务机制详解
一碗黄焖鸡三碗米饭
Kafka全景解析kafka分布式Java副本事务分区大数据
目录Kafka事务机制详解1.Kafka中的事务概述2.Kafka事务的基本概念2.1精确一次处理(ExactlyOnceSemantics,EOS)2.2Kafka事务的工作流程3.Kafka事务的配置与使用3.1生产者端的事务配置3.2消费者端的事务配置4.Kafka事务的优势与限制4.1Kafka事务的优势4.2Kafka事务的限制5.总结在分布式系统中,事务性操作(如数据库事务)是非常重要
- kafka的ISR机制详解
inori1256
kafka分布式
Kafka的ISR机制ISR(In-SyncReplicas同步副本集)机制是一种用于确保数据可靠性和一致性的重要机制。一、ISR的定义ISR是指与Kafka分区中的Leader副本保持同步的Follower副本集合。这些副本已经复制了Leader副本的所有数据,并且它们的落后时间在一定范围内,因此被认为是可靠的、可以用于故障转移和数据恢复的副本。二、ISR的作用数据复制:当消息被写入Kafka的
- 一句话读懂Kafka:5W1H带你解锁分布式消息队列的奥密
落霞归雁
AI编程教育电商微信开放平台rabbitmq中间件
一句话读懂Kafka:5W1H带你解锁分布式消息队列的奥秘在当今数字化时代,消息队列(MessageQueue,简称MQ)已经成为分布式系统中不可或缺的组件,而ApacheKafka作为其中的佼佼者,以其卓越的性能和广泛的应用场景脱颖而出。今天,就让我们用一句话读懂Kafka,并通过5W1H(What、Why、Who、When、Where、How)的方式,深入剖析它的核心价值与技术魅力。一句话读懂
- Kafka——两种集群搭建详解 k8s
Michaelwubo
kafka分布式
1、简介Kafka是一个能够支持高并发以及流式消息处理的消息中间件,并且Kafka天生就是支持集群的,今天就主要来介绍一下如何搭建Kafka集群。Kafka目前支持使用Zookeeper模式搭建集群以及KRaft模式(即无Zookeeper)模式这两种模式搭建集群,这两种模式各有各的好处,今天就来分别介绍一下这两种方式1.1、Kafka集群中的节点类型一个Kafka集群是由下列几种类型的节点构成的
- 零基础学习性能测试第九章:全链路追踪-系统中间件节点监控
试着
性能测试学习中间件性能测试零基础
目录一、为什么需要监控中间件节点?二、主流中间件监控方案1.监控体系架构2.监控工具矩阵三、环境搭建实战1.部署Prometheus2.部署Grafana四、中间件监控配置实战1.Nginx监控2.Redis监控3.Kafka监控4.MySQL监控五、全链路追踪中的中间件监控1.SkyWalking与Prometheus集成2.全链路视角的中间件监控六、性能瓶颈定位实战1.瓶颈分析流程图2.典型瓶
- Flink Checkpoint 状态后端详解:类型、特性对比及场景化选型指南
ApacheFlink提供了多种状态后端以支持Checkpoint机制下的状态持久化,确保在故障发生时能够快速恢复状态并实现Exactly-Once处理语义。以下是几种常见状态后端的详细介绍及其对比情况,以及不同场景下的选型建议:1.MemoryStateBackend(内存状态后端)描述:MemoryStateBackend将状态数据存储在TaskManager的JVM堆内存中,并在Checkp
- Flink 自定义类加载器和子优先类加载策略
lifallen
Flink数据库数据结构大数据flinkjava分布式
子类优先加载Flink默认采用了子优先(Child-First)的类加载策略来加载用户代码,以解决潜在的依赖冲突问题。我们可以通过源码来证明这一点。ChildFirstClassLoader的实现Flink中负责实现“子优先”加载逻辑的核心类是ChildFirstClassLoader。其关键的loadClassWithoutExceptionHandling方法定义了类加载的顺序。//...ex
- Flink window 源码分析4:WindowState
北_鱼
Flinkflink大数据bigdata
Flinkwindow源码分析1:窗口整体执行流程Flinkwindow源码分析2:Window的主要组件Flinkwindow源码分析3:WindowOperatorFlinkwindow源码分析4:WindowState本文分析的源码为flink1.18.0_scala2.12版本。reduce、aggregate等函数中怎么使用WindowState?主要考虑reduce、aggregate
- Kafka 去 ZooKeeper 化实战:KRaft 架构高可用部署实践与运维提升之道
derek2026
部署实践kafka运维持续部署
Kafka去ZooKeeper化实战:KRaft架构高可用部署实践与运维提升之道一、为什么选择Kafka-Kraft架构?Kafka作为分布式消息系统的标杆,长期依赖ZooKeeper进行元数据管理。但Kafka-Kraft模式通过引入自管理的元数据仲裁机制,彻底摆脱了ZooKeeper依赖,带来三大核心优势:部署简化:减少运维组件,降低系统复杂度性能提升:元数据操作延迟降低40%稳定性增强:消除
- RocketMQ常见问题梳理
kk在加油
rocketmq
MQ常见问题深度剖析:消息不丢失、顺序性、幂等性与积压处理本文基于RocketMQ核心原理,结合Kafka/RabbitMQ对比,深入分析MQ四大核心问题解决方案一、消息不丢失保障机制消息丢失风险点跨网络传输:生产者→Broker、Broker→消费者、主从同步Broker缓存机制:PageCache异步刷盘导致数据未持久化极端故障:整个MQ集群宕机生产者保证方案1.发送确认机制//RocketM
- Flink实战(七十):监控(二)搭建flink可视化监控 Pushgateway+ Prometheus + Grafana (windows )
王知无(import_bigdata)
Flink系统性学习专栏flink大数据
1Flink的配置:在flink配置⽂件flink-conf.yaml中添加:metrics.reporter.promgateway.class:org.apache.flink.metrics.prometheus.PrometheusPushGatewayReportermetrics.reporter.promgateway.host:localhost#promgateway主要是Pus
- JDBC时间类型与Java类型、Flink SQL时间类型与Java类型的对应关系
哈哈很哈哈
javaflinksql
一、JDBC时间类型与Java类型的对应关系JDBC类型Java类型说明TIMESTAMPjava.sql.Timestamp表示日期和时间(含毫秒)DATEjava.sql.Date仅表示日期(不含时间)TIMEjava.sql.Time仅表示时间(不含日期)说明:java.sql.Timestamp继承自java.util.Date,可精确到纳秒(实际常用毫秒)。java.sql.Date和j
- Flink Oracle CDC logminer ogg 对比, PDB logminer CDC 测试
维度FlinkCDC(主库)FlinkCDC(备库)Flinkconnector(Kafka)ADG(ActiveDataGuard)同步机制基于LogMiner解析RedoLog需通过OGG同步备库基于LogMiner解析RedoLog需通过OGG捕获日志后写入Kafka物理复制,主备数据块一致架构特点需直连主库独立进程,低侵入性独立进程,低侵入性仅支持查询,无法捕获实时变更数据链路oracle
- 基于Prometheus的flink性能监控小坑记录
darkness0604
flink大数据java大数据flink
背景公司内的flink集群跑了挺长一段时间了,一直也没有对其进行一个比较完整的监控,最近打算着手做这件事情,经过网上的调研,目前公司采用的部署模式是per-job模式,最终选用了基于prometheus,把job指标推送到中间网关的pushgateway上面,然后prometheus去抓取pushgateway上面的信息,从而实现对flink做性能监控,最后通过Grafana进行展示。问题在接入过
- PushGateway+Prometheus+Grafana构建Flink实时监控
站在最高处呐喊的男人!
flinkflink大数据pushgatewayprometheusgrafana
#组件简介flinkAPP和linuxsystem两部分,是我们要收集指标数据的组件Pushgateway:是一个推送收集和推送数据的组件Node_exporter:数据导出组件Prometheus:系统监控和预警框架Grafana:可视化展示平台#环境搭建注意,如果浏览器访问不到,iptables-IINPUT-ptcp--dport9090-jACCEPT1.0.flink下载安装包https
- kafka的消息存储机制和查询机制
不辉放弃
kafka大数据开发数据库pyspark
Kafka作为高性能的分布式消息队列,其消息存储机制和查询机制是保证高吞吐、低延迟的核心。以下从存储机制和查询机制两方面详细讲解,包含核心原理、关键组件及工作流程。一、Kafka消息存储机制Kafka的消息存储机制围绕高可用、高吞吐、可扩展设计,核心是通过分区、副本、日志分段和索引实现高效存储与管理。1.基本组织单位:主题(Topic)与分区(Partition)主题(Topic):消息的逻辑容器
- synchronized锁升级过程【AI笔记,仅供自己参考】
在Java中,synchronized是一种内置的同步机制,用于保证多线程环境下代码的原子性、可见性和有序性。从JDK1.6开始,为了减少锁带来的性能开销,Java对synchronized做了大量优化,引入了锁升级机制(LockEscalation)。一、什么是锁升级?锁升级是指JVM在运行时根据对象的使用情况,对对象的锁状态进行动态优化的过程。它不是“升级为更重的锁”,而是从轻量级锁逐步升级到
- 【kafka4源码学习系列】kafka4总体架构介绍
oraen
学习kafka架构
二kafka架构介绍学习一个系统之前很重要的一点就是先了解这个系统整体的架构,这能够使我们对整个系统有个总体的认识,清楚地知道这个系统有什么能力。这不仅帮助我们学习时快速定位到我们想要的内容,还能避免我们学习过程中在庞大的系统中迷失自己。所以首先我会介绍一下kafka的整体架构,包括这个kafka系统的整体架构,模块组成,模块的功能以及模块之间关系,以及各个模块之间是怎么共同构成这套系统的。kaf
- ogg同步Kafka到oracle,ORACLE OGG同步到KAFKA
ORACLEOGG同步到KAFKA1、介绍Kafka是一种高效的消息队列实现,经过订阅kafka的消息队列,下游系统能够实时获取在线Oracle系统的数据变动状况,实现业务系统javaogg同步全量数据方式:①经过数据泵方式基于SCN导出并导入到目标端,此方式用于Oracle到Oracle的ogg同步环境中。②经过ogg自己的初始化方式,初始化全量数据到目标端,此方式通用于全部环境,可是速度相对较
- oracle ogg 全量 增量,1.利用ogg实现oracle到kafka的增量数据实时同步.md
##利用ogg实现oracle到kafka的增量数据实时同步####前言>ogg即OracleGoldenGate是Oracle的同步工具,本文讲如何配置ogg以实现Oracle数据库增量数据实时同步到kafka中,其中同步消息格式为json。下面是源端和目标端的一些配置信息:|--|版本|OGG版本|IP|别名||:---------|:--:|-----------:|:-----------
- 第四篇:深入探讨Kafka消费者的架构和原理
Gemini技术窝
kafka架构java后端中间件
大家好!今天我们要深入探讨Kafka消费者的架构和原理。Kafka消费者是从Kafka集群中读取消息的客户端应用,其设计和实现直接影响消息处理的效率和可靠性。本文将介绍Kafka消费者和消费者组的原理和作用,使用示例代码和源码剖析消费者的参数和功能,并详细介绍Kafka消费者如何订阅主题和分区。希望通过这篇文章,你能全面理解Kafka消费者的工作机制。准备好了吗?让我们开始吧!文章目录一、Kafk
- Kafka消费者负载均衡策略
⼀个消费者组中的⼀个分⽚对应⼀个消费者成员,他能保证每个消费者成员都能访问,如果组中成员太多会有空闲的成员Kafka消费者负载均衡策略详解从分区分配算法到Rebalance机制,全面解析Kafka如何实现消费者间的负载均衡,并提供调优建议和问题解决方案。1.核心概念术语作用类比ConsumerGroup共享消费任务的消费者组外卖骑手团队PartitionTopic的物理分片配送区域划分Rebala
- 狂神说Linux笔记
是你牛天成
项目部署linux
B站视频狂神说LinuxJava开发之路:JavaSE,MySQL,前端(html,css,js),javaweb,SSM框架,SpringBootvue,SpringCloud,(mybatis-plusgit)LinuxLinux操作系统:Window、Mac消息队列(Kafka,RabbitMQ,RockeetMQ)缓存(Redis)搜索引擎(ElasticSearch)集群分布式(需要购买
- Kafka消费者负载均衡和数据积压问题
抱紧大佬大腿不松开
kafka负载均衡分布式大数据
在大数据领域中,ApacheKafka是一个常用的分布式消息队列系统,它被广泛应用于实时数据处理和流式数据处理场景。Kafka的消费者负载均衡机制和数据积压问题是使用Kafka时需要关注和解决的重要议题。消费者负载均衡机制是指如何将消息分配给多个消费者,以实现高吞吐量和高可扩展性。Kafka通过使用消费者组(consumergroup)的概念来实现负载均衡。一个消费者组可以包含多个消费者,每个消费
- kafka的消费者负载均衡机制
不辉放弃
kafka负载均衡分布式数据库
Kafka的消费者负载均衡机制是保证消息高效消费的核心设计,通过将分区合理分配给消费者组内的消费者,实现并行处理和负载均衡。以下从核心概念、分配策略、重平衡机制等方面详细讲解。一、核心概念理解消费者负载均衡前,需明确三个关键概念:消费者组(ConsumerGroup)多个消费者组成的逻辑组,共同消费一个或多个主题的消息。组内消费者共享一个group.id标识,Kafka通过该标识区分不同消费组。分
- 实时流式计算
实时流式计算一般流式计算会与批量计算相比较。在流式计算模型中,输入是持续的,可以认为在时间上是无界的,也就意味着,永远拿不到全量数据去做计算。同时,计算结果是持续输出的,也即计算结果在时间上也是无界的。流式计算一般对实时性要求较高,同时一般是先定义目标计算,然后数据到来之后将计算逻辑应用于数据。同时为了提高计算效率,往往尽可能采用增量计算代替全量计算。KafkaStreamKafkaStream是
- 掌握Apache Flink:实时数据处理与分析实操
泓三宝
本文还有配套的精品资源,点击获取简介:ApacheFlink是一个高效的开源流处理框架,专为实时数据处理和分析设计。本文将通过一个具体的代码示例,深入讲解Flink的核心概念如DataStream、FlatMap和ReduceMap,并展示如何将这些概念应用于实际场景。通过解析“wiki-edits”数据流的实例,我们将探讨如何使用Flink的API进行数据转换、聚合和实时分析,包括窗口和触发器的
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p