- 基于深度学习的图像分类:使用ShuffleNet实现高效分类
Blossom.118
机器学习与人工智能深度学习分类人工智能机器学习数据挖掘python目标检测
前言图像分类是计算机视觉领域中的一个基础任务,其目标是将输入的图像分配到预定义的类别中。近年来,深度学习技术,尤其是卷积神经网络(CNN),在图像分类任务中取得了显著的进展。ShuffleNet是一种轻量级的深度学习架构,专为移动和嵌入式设备设计,能够在保持较高分类精度的同时,显著减少计算量和模型大小。本文将详细介绍如何使用ShuffleNet实现高效的图像分类,从理论基础到代码实现,带你一步步掌
- 一文说清楚Hive
Hive作为ApacheHadoop生态的核心数据仓库工具,其设计初衷是为熟悉SQL的用户提供大规模数据离线处理能力。以下从底层计算框架、优点、场景、注意事项及实践案例五个维度展开说明。一、Hive底层分布式计算框架对比Hive本身不直接执行计算,而是将HQL转换为底层计算引擎的任务。目前支持的主流引擎及其特点如下:计算引擎核心原理优点缺点适用场景MapReduce基于“Map→Shuffle→R
- 掌握 anime.js 的 shuffle:从入门到精通
木牛流马2077
anime.js入门教程arcgis
一、引言:anime.js与shuffle概述在现代Web开发中,动画效果已成为提升用户体验的关键要素。anime.js作为一个轻量级、功能强大的JavaScript动画库,凭借其简洁的API和强大的功能,成为众多开发者的首选。其中,shuffle作为anime.js提供的实用工具函数之一,能够帮助我们轻松实现元素的随机排列动画,为网页增添动态和交互性。本文将全面介绍anime.js的shuffl
- YOLO 目标检测的改进方法
YOLO目标检测的改进方法可以从模型架构、训练策略、损失函数等多个方面入手,以下是一些常见的改进方法方向及参考文献:模型架构改进骨干网络替换:使用更轻量或更强大的网络替换原始骨干网络。轻量级网络如MobileNetV3、ShuffleNetV2等适合移动端部署,可提高推理速度;高性能网络如ConvNeXt、SwinTransformer等能提取更丰富的语义特征,提升检测精度。还可添加CBAM、SE
- hive的sql优化思路-明白底层运行逻辑
ycllycll
hivesqlhadoop
一、首先要明白底层map、shuffle、reduce的顺序之中服务器hdfs数据文件在内存与存储之中是怎么演变的,因为hive的性能瓶颈基本在内存,具体参考以下他人优秀文章:1.HiveSQL底层执行过程详细剖析2.HiveJOIN性能调优二是要明白hive对应的sql它底层的mapreduce的过程中sql字段的执行顺序,来理解map的key、value会填充什么值,才能深刻理解怎么一步一步的
- 【机器学习【9】】评估算法:数据集划分与算法泛化能力评估
roman_日积跬步-终至千里
#机器学习机器学习
文章目录一、数据集划分:训练集与评估集二、K折交叉验证:提升评估可靠性1.基本原理1.1.K折交叉验证基本原理1.2.逻辑回归算法与L22.基于K折交叉验证L2算法三、弃一交叉验证(Leave-One-Out)1、基本原理2、代码实现四、ShuffleSplit交叉验证1、基本原理2、为什么能降低方差3、代码测试五、选择建议在机器学习中,评估算法的核心目标是衡量模型在“未知数据”上的表现,而不是仅
- com本质论 pdf_如何使用PDF Arranger来对PDF文件进行编排和修改
weixin_39797780
com本质论pdfcreatprocess操作文件delphifedora如何隐藏顶部状态栏linux.bash_profile文件linuxc++编程pdf
PDFArranger是一个十分简单的GUI应用程序,能够帮助您拆分或合并PDF文档,以及旋转,裁剪和重新编排页面。所有前面提到的任务都可以通过交互式和直观的图形界面轻松完成。Pdfarranger是pdfshuffler的fork以及pikepdf的前端。PDFArranger在许多流行的GNU/Linux操作系统和MicrosoftWindows上都能良好地运行。它是使用GTK+和Python
- MapReduce 学习
chuanauc
mapreduce学习大数据
MapReduce的过程:mapshufflereduce其中,程序员需要实现的内容是:程序员手动实现Map任务的具体逻辑,将数据根据Map代码进行分割,返回(key,value)键值对然后这些(Key,Values)键值对先会被存放到磁盘,然后由MapReduce按照Key,进行排序,排序原则为,将同一个Key的键值对组织到一起,然后将同Key的键值对组,按照Key排序。而后将每个Map节点上找
- 1.线性神经网络--线性回归
温柔济沧海
深度学习神经网络线性回归python
1.1从零实现线性回归importrandomimporttorch#fromd2limporttorchasd2limportmatplotlib.pyplotaspltdeftrain_data_make(batch_size,X,y):num_examples=len(X)idx=list(range(num_examples))#生成0-999random.shuffle(idx)#样本需
- MapReduce数据处理过程2万字保姆级教程
大模型大数据攻城狮
mapreduce大数据yarncdhhadoop大数据面试shuffle
目录1.MapReduce的核心思想:分而治之的艺术2.HadoopMapReduce的架构:从宏观到微观3.WordCount实例:从代码到执行的完整旅程4.源码剖析:Job.submit的魔法5.Map任务的执行:从分片到键值对6.Shuffle阶段:MapReduce的幕后英雄7.Reduce任务的执行:从数据聚合到最终输出8.Combiner的魔法:提前聚合的性能利器9.Partition
- 文本数据增强-同义词替换、随机交换、随机插入、随机删除
根据zhangy代码改写,主要针对千言问题匹配进行文本数据增强。依赖安装pipinstalljiebapipinstallsynonymseda.pyimportjiebaimportsynonymsimportrandomfromrandomimportshufflerandom.seed(2019)#停用词列表,默认使用哈工大停用词表f=open('stopwords/hit_stopword
- 头歌 MapReduce的编程开发-排序
敲代码的苦13
头歌mapreduce电脑大数据
任务描述本关任务:根据用户行为数据,编写MapReduce程序来统计出商品点击量排行。相关知识排序概述在MapReduce的Shuffle的过程中执行了三次排序,分别是:map中的溢写阶段:根据分区以及key进行快速排序。map中合并溢写文件:将同一分区的多个溢写文件进行归并排序,合成一个大的溢写文件。reduce输入阶段:将同一分区,来自不同maptask的数据文件进行归并排序。在MapRedu
- YOLO11改进|注意力机制篇|引入注意力机制Shuffle Attention
如果能为勤奋颁奖
YOLO11改进专栏YOLO
目录一、【ShuffleAttention】注意力机制1.1【ShuffleAttention】注意力介绍1.2【ShuffleAttention】核心代码二、添加【ShuffleAttention】注意力机制2.1STEP12.2STEP22.3STEP32.4STEP4三、yaml文件与运行3.1yaml文件3.2运行成功截图一、【ShuffleAttention】注意力机制1.1【Shuff
- 基于CNN卷积神经网络识别汉字合集-视频介绍下自取
no_work
深度学习cnn人工智能神经网络
内容包括:含ShuffleNet等多个模型的手写中文汉字识别摄像头版109含ShuffleNet等多个模型的手写中文汉字识别摄像头版_哔哩哔哩_bilibili本代码用的python语言,pytorch深度学习框架运行,环境的安装可以参考博客:深度学习环境安装教程-anaconda-python-pytorch_动手学习深度学习的环境安装-CSDN博客代码总共分成三个部分,01py文件是划分数据集
- 【Flink】Flink自定义流分区器Partitioner、数据倾斜、CustomPartitionerWrapper
九师兄
flink大数据
1.概述20240118今日在群里看到一个人的流计算任务发生数据倾斜了。然后第一怀疑是上游不均匀,然后发现上游是均匀的。但是后面发现他这个分区器是一个新的shufflebybucket但是我在文章中:【Flink】FlinkUI上下游算子并发之间的数据传递方式Partitioner、流分区器记得好像没有这种类型。然后查看了一下,发现果然没有。
- 28 - ShuffleAttention模块
Leo Chaw
深度学习算法实现深度学习计算机视觉pytorch人工智能
论文《SA-NET:SHUFFLEATTENTIONFORDEEPCONVOLUTIONALNEURALNETWORKS》1、作用SA模块主要用于增强深度卷积网络在处理图像分类、对象检测和实例分割等任务时的性能。它通过在神经网络中引入注意力机制,使网络能够更加关注于图像中的重要特征,同时抑制不相关的信息。2、机制1、特征分组:SA模块首先将输入特征图沿通道维度分成多个子特征组,这样每个子特征组可以
- Spark Shuffle详解
zh_19995
spark大数据分布式数据仓库
Shuffle简介Shuffle描述着数据从maptask输出到reducetask输入的这段过程。shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量。因为在分布式情况下,reducetask需要跨节点去拉取其它节点上的maptask结果。这一过程将会产生网络资源消耗和内存,磁
- 【STL】函数对象+常用算法
Cai junhao
C++算法c++stl考研笔记
文章目录STL-函数对象函数对象函数对象使用谓词一元谓词二元谓词内建函数对象算术仿函数关系仿函数STL-常用算法常用遍历算法for_eachtransform常用查找算法findfind_ifadjacent_findbinary_searchcountcount_if常用排序算法sortrandom_shufflemergereverse常用拷贝和替换算法copyreplacereplace_i
- Spark性能优化深度剖析:十大实战策略与案例解析
目录Spark核心优化原理资源调优实战技巧并行度优化指南广播变量高效应用数据倾斜终极解决方案Shuffle过程优化秘籍内存管理进阶技巧算子优化黄金法则真实案例深度解析全链路调优方案1.Spark核心优化原理Spark基于内存计算的特性使其比Hadoop快100倍,但实际性能取决于资源配置、数据倾斜处理、Shuffle优化等关键因素。核心优化公式:性能=资源效率×并行度×算法效率×数据均衡度内存计算
- SparkSQL 优化实操
社恐码农
sparksql
一、基础优化配置1.资源配置优化#提交Spark作业时的资源配置示例spark-submit\--masteryarn\--executor-memory8G\--executor-cores4\--num-executors10\--confspark.sql.shuffle.partitions=200\your_spark_app.py参数说明:executor-memory:每个Execu
- 突破协议限制:Python猴子补丁的动态魔力
钢铁男儿
流程Pythonpython网络开发语言
协议即契约,动态语言的可塑性让代码在运行时重生。问题根源:不可变序列的局限性协议缺失FrenchDeck实现了不可变序列协议(len和getitem),但缺少可变序列的关键方法setitem,导致无法就地修改元素位置。错误本质random.shuffle依赖元素赋值操作x[i]=x[j],抛出TypeError的根本原因是对象未实现可变容器协议。解决方案:猴子补丁技术剖析核心操作#定义元素赋值函数
- Python 接口:从协议到抽象基 类(使用猴子补丁在运行时实现协议)
钢铁男儿
流程Pythonpython开发语言
使用猴子补丁在运行时实现协议示例11-4中的FrenchDeck类有个重大缺陷:无法洗牌。几年前,第一次编写FrenchDeck示例时,我实现了shuffle方法。后来,我对Python风格有了深刻理解,我发现如果FrenchDeck实例的行为像序列,那么它就不需要shuffle方法,因为已经有random.shuffle函数可用,文档中说它的作用是“就地打乱序列x”(https://docs.p
- ResNet改进(45):结合通道混洗(ShuffleNet)的混合架构
点我头像干啥
ResNet改进【有效涨点!】机器学习人工智能深度学习算法
1.创新点分析今天我们将深入分析一个创新的卷积神经网络(CNN)实现,它巧妙地将经典的ResNet架构与新兴的通道混洗(ChannelShuffle)技术相结合。这个实现位于cnn_model.py文件中,展示了如何通过自定义模块来增强现有网络架构的性能。模型架构总览该实现定义了一个名为CustomResNet的类,它基于ResNet34架构,但在其中嵌入了自定义的ShuffleBlock模块。这
- 学习日记-day20-6.1
永日45670
学习
完成目标:知识点:1.集合_Collections集合工具类方法:staticbooleanaddAll(Collectionc,T...elements)->批量添加元素staticvoidshuffle(Listlist)->将集合中的元素顺序打乱staticvoidsort(Listlist)->将集合中的元素按照默认规则排序staticvoidsort(Listlist,Comparato
- yolov8添加注意力机制
LeonDL168
YOLOYOLOpython深度学习yolo数据集yolov8添加注意力机制yolov8/yolo11人工智能
在YOLOv8中添加注意力机制可以显著提升模型对关键特征的关注能力,从而提高检测精度。以下是几种主流注意力机制的实现方法和集成策略:1.注意力机制选择根据计算效率和效果,推荐以下几种注意力模块:CBAM:同时关注通道和空间维度,效果显著但计算开销较大。ECA:轻量级通道注意力,几乎不增加参数量。ShuffleAttention:高效的通道和空间注意力融合。SimAM:无需额外参数,基于神经元活跃度
- Hive的数据倾斜是什么?
安审若无
Hive性能优化及调优hivehadoop数据仓库
一、Hive数据倾斜的定义数据倾斜指在Hive分布式计算过程中,某一个或几个Task(如Map/Reduce任务)处理的数据量远大于其他Task,导致这些Task成为整个作业的性能瓶颈,甚至因内存不足而失败。数据倾斜通常发生在Shuffle阶段(如Join、GroupBy、Distinct等操作),本质是键分布不均匀导致的计算资源分配失衡。二、数据倾斜的原因1.数据源本身分布不均业务数据中某些键(
- spark- ResultStage 和 ShuffleMapStage介绍
大数据知识搬运工
spark学习spark大数据分布式
目录1.ShuffleMapStage(中间阶段)1.1作用1.2核心特性1.3示例2.ResultStage(最终结果阶段)2.1作用2.2核心特性2.3示例3.对比总结4.执行流程示例5.常见问题Q1:为什么需要区分两种Stage?**Q2:如何手动观察Stage划分?Q3:ShuffleMapStage的数据一定会落盘吗?在Spark的DAG调度模型中,Stage被划分为ResultStag
- spark shuffle的分区支持动态调整,而hive不支持
大数据知识搬运工
spark学习sparkhive大数据
根据Spark官方文档,SparkShuffle分区支持动态调整的核心原因在于其架构设计和执行模型的先进性:1.自适应查询执行(AQE)机制Spark3.0+引入的AQE特性允许在运行时动态优化执行计划,包括Shuffle分区调整:分区合并:通过spark.sql.adaptive.coalescePartitions参数,自动合并小分区(默认目标分区大小64MB)数据倾斜处理:自动将大分区拆分为
- spark 2.1 Stage and ResultStage and ShuffleMapStage
houzhizhen
sparkspark
Stage/***Astageisasetofparalleltasksallcomputingthesamefunctionthatneedtorunaspart*ofaSparkjob,whereallthetaskshavethesameshuffledependencies.EachDAGoftasksrun*bytheschedulerissplitupintostagesatthebo
- 机器学习dataloader中shuffle=True及使用随机种子控制随机性
行至568
机器学习实践机器学习人工智能python深度学习数据分析数据库
我们首先来看如下代码:train_loader=DataLoader(train_dataset,batch_size=batch_size,shuffle=True)val_loader=Dataloader(val_dataset,batch_size=x=batch_size,shuffle=False)为什么train_loader的shuffle=True而val_loader的shuf
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C