【基于langchain + streamlit 完整的与文档对话RAG】

本地部署文档问答webdemo

  • 支持 pdf
  • 支持 txt
  • 支持 doc/docx
  • 支持 源文档索引

你的点赞收藏是我持续分享优质内容的动力哦~

废话不多说直接看效果

【基于langchain + streamlit 完整的与文档对话RAG】_第1张图片

准备

  • 首先创建一个新环境(选择性)
conda create -n chatwithdocs python=3.11
conda activate chatwithdocs
  • 新建一个requirements.txt文件
streamlit
python-docx
PyPDF2
faiss-gpu
langchain
langchain-core
langchain-community
  • 然后安装相应的包
pip install -r requirements.txt -U

代码

创建一个app.py文件, 把下边的复制进去
注意:替换你自己的api-keybase-url

import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings
from langchain_core.documents import Document
from langchain.chains import ConversationalRetrievalChain
import docx
from PyPDF2 import PdfReader

import os
os.environ['OPENAI_API_KEY']='xxx'
# os.environ['OPENAI_BASE_URL']='xxx' # 看你的情况

st.set_page_config(page_title="Chat with Documents", page_icon=":robot:", layout="wide")

st.markdown(
    """
# """,
    unsafe_allow_html=True,
)

bot_template = """
{{MSG}}
"""
user_template = """
{{MSG}}
"""
def get_pdf_text(pdf_docs): docs = [] for document in pdf_docs: if document.type == "application/pdf": pdf_reader = PdfReader(document) for idx, page in enumerate(pdf_reader.pages): docs.append( Document( page_content=page.extract_text(), metadata={"source": f"{document.name} on page {idx}"}, ) ) elif ( document.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document" ): doc = docx.Document(document) for idx, paragraph in enumerate(doc.paragraphs): docs.append( Document( page_content=paragraph.text, metadata={"source": f"{document.name} in paragraph {idx}"}, ) ) elif document.type == "text/plain": text = document.getvalue().decode("utf-8") docs.append(Document(page_content=text, metadata={"source": document.name})) return docs def get_text_chunks(docs): text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=0) docs_chunks = text_splitter.split_documents(docs) return docs_chunks def get_vectorstore(docs_chunks): embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_documents(docs_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore): llm = ChatOpenAI() conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), return_source_documents=True, ) return conversation_chain def handle_userinput_pdf(user_question): chat_history = st.session_state.chat_history response = st.session_state.conversation( {"question": user_question, "chat_history": chat_history} ) st.session_state.chat_history.append(("user", user_question)) st.session_state.chat_history.append(("assistant", response["answer"])) st.write( user_template.replace("{{MSG}}", user_question), unsafe_allow_html=True, ) sources = response["source_documents"] source_names = set([i.metadata["source"] for i in sources]) src = "\n\n".join(source_names) src = f"\n\n> source : {src}" message = st.session_state.chat_history[-1] st.write(bot_template.replace("{{MSG}}", message[1] + src), unsafe_allow_html=True) def show_history(): chat_history = st.session_state.chat_history for i, message in enumerate(chat_history): if i % 2 == 0: st.write( user_template.replace("{{MSG}}", message[1]), unsafe_allow_html=True, ) else: st.write( bot_template.replace("{{MSG}}", message[1]), unsafe_allow_html=True ) def main(): st.header("Chat with Documents") # 初始化会话状态 if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = [] with st.sidebar: st.title("文档管理") pdf_docs = st.file_uploader( "选择文件", type=["pdf", "txt", "doc", "docx"], accept_multiple_files=True, ) if st.button( "处理文档", on_click=lambda: setattr(st.session_state, "last_action", "pdf"), use_container_width=True, ): if pdf_docs: with st.spinner("Processing"): docs = get_pdf_text(pdf_docs) docs_chunks = get_text_chunks(docs) vectorstore = get_vectorstore(docs_chunks) st.session_state.conversation = get_conversation_chain(vectorstore) else: st.warning("记得上传文件哦~~") def clear_history(): st.session_state.chat_history = [] if st.session_state.chat_history: st.button("清空对话", on_click=clear_history, use_container_width=True) with st.container(): user_question = st.chat_input("输入点什么~") with st.container(height=400): show_history() if user_question: if st.session_state.conversation is not None: handle_userinput_pdf(user_question) else: st.warning("记得上传文件哦~~") if __name__ == "__main__": main()

启动

  • 自动在浏览器打开
streamlit run app.py

你可能感兴趣的:(大模型微调部署实战,langchain,streamlit,RAG)