深度学习框架PyTorch原理与实践

深度学习框架PyTorch原理与实践_第1张图片

作者:禅与计算机程序设计艺术

文章目录

  • 1.简介
  • 2.背景介绍
  • 3.基本概念和术语
    • 3.1 PyTorch简介
    • 3.2 PyTorch的特点
      • 1)自动求导机制
      • 2)GPU加速
      • 3)模型部署
      • 4)数据管道
      • 5)代码阅读友好
  • 4.核心算法原理
    • 4.1 神经网络结构
    • 4.2 神经网络层
    • 4.3 激活函数
  • 5.实际案例——MNIST手写数字识别
    • 数据准备
    • 模型定义
    • 训练
    • 测试
    • 整体代码

1.简介

Deep learning (DL) has been an increasingly popular topic in recent years due to its powerful ability to solve complex problems with high accuracy and efficiency. There are many DL frameworks available such as TensorFlow, Keras, Caffe, etc., but PyTorch is undoubtedly the most prominent one. It was released by Facebook AI Research Team in 2017 and is a new framework that offers seamless integration of various deep learning techniques including neural networks and deep reinforcement learning models. In this article, we will be exploring the core concepts, algorithms, code examples and applications

你可能感兴趣的:(AI实战,大数据,人工智能,语言模型,Java,Python,架构设计)