RT-DETR改进策略【Neck】| PRCV 2023,SBA(Selective Boundary Aggregation):特征融合模块,描绘物体轮廓重新校准物体位置,解决边界模糊问题

一、本文介绍

本文主要利用DuAT中的SBA 模块优化 RT-DETR的目标检测网络模型SBA 模块借鉴了医疗图像分割中处理边界信息的独特思路,通过创新性的结构设计,在维持合理计算复杂度的基础上,巧妙融合浅层的边界细节特征与深层的语义信息,实现边界特征的精准提取与语义信息的有效整合。将其应用于RT-DETR的改进过程中,能够使模型着重聚焦于目标物体的边界区域,降低背景及其他无关信息的影响,强化目标物体的边界特征表达,从而提升模型在复杂场景下对目标物体的检测精度与定位准确性。


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

文章目录

  • 一、本文介绍
  • 二、SBA介绍
    • 2.1 出发点
    • 2.2 结构原理
    • 2.3 作用
  • 三、SBA的实现代码
  • 四、添加步骤
    • 4.1 修改一
    • 4.2 修改二

你可能感兴趣的:(RT-DETR改进专栏,人工智能,计算机视觉,深度学习,RT-DETR)