- Hive使用必知必会系列
王知无(import_bigdata)
Hive系统性学习专栏hivebigdatahdfs
一、Hive的几种数据模型内部表(Table将数据保存到Hive自己的数据仓库目录中:/usr/hive/warehouse)外部表(ExternalTable相对于内部表,数据不在自己的数据仓库中,只保存数据的元信息)分区表(PartitionTable将数据按照设定的条件分开存储,提高查询效率,分区----->目录)桶表(BucketTable本质上也是一种分区表,类似hash分区桶---->
- Milvus 实战全流程
学习路径总览1.Milvus基础知识什么是向量数据库?Milvus的核心概念(collection、field、index、partition、segment)Milvus和Faiss、Annoy、HNSW的区别2.安装与部署Docker快速部署Milvus(推荐)本地开发环境安装使用MilvusLite本地测试3.数据建模与管理创建Collection与Schema定义(包含向量字段和元数据字段
- 《剑指offer》-算法篇-排序
小新学习屋
数据结构与算法算法leetcode职场和发展数据结构与算法
题目最小的K个数数组中的逆序对代码实现最小的K个数题目描述:输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。思路:按照各种排序算法,找到排序结果的前K个数。思路1:最简单的方案,对数组进行排序,取最小的k个思路2:借鉴快速排序的思想,找partition的基准点povit,比较povit和k值的大小思路3:大数据处理的思想,
- kafka的消息存储机制和查询机制
不辉放弃
kafka大数据开发数据库pyspark
Kafka作为高性能的分布式消息队列,其消息存储机制和查询机制是保证高吞吐、低延迟的核心。以下从存储机制和查询机制两方面详细讲解,包含核心原理、关键组件及工作流程。一、Kafka消息存储机制Kafka的消息存储机制围绕高可用、高吞吐、可扩展设计,核心是通过分区、副本、日志分段和索引实现高效存储与管理。1.基本组织单位:主题(Topic)与分区(Partition)主题(Topic):消息的逻辑容器
- 组合问题(分割字符串)
limitless_peter
算法
131.分割回文串-力扣(LeetCode)classSolution{private:vector>result;vectorpath;voidbacktracking(string&s,intstartIndex){if(startIndex>=s.size()){result.push_back(path);return;}for(inti=startIndex;i>partition(st
- Kafka消费者负载均衡策略
⼀个消费者组中的⼀个分⽚对应⼀个消费者成员,他能保证每个消费者成员都能访问,如果组中成员太多会有空闲的成员Kafka消费者负载均衡策略详解从分区分配算法到Rebalance机制,全面解析Kafka如何实现消费者间的负载均衡,并提供调优建议和问题解决方案。1.核心概念术语作用类比ConsumerGroup共享消费任务的消费者组外卖骑手团队PartitionTopic的物理分片配送区域划分Rebala
- 力扣-416.分割等和子集
题目链接416.分割等和子集classSolution{publicbooleancanPartition(int[]nums){intsum=0;for(inti=0;i=0;j--){if(j-nums[i]>=0){//更新dp[j]:比较不放入当前数字和放入当前数字两种情况dp[j]=Math.max(dp[j],dp[j-nums[i]]+nums[i]);}}}returndp[tar
- Hive的窗口函数
VictorWuuu
hivehadoop数据仓库
Hive的窗口函数(WindowFunctions)是其SQL功能的核心亮点之一,用于在分组数据上执行计算,同时保留原始表的行数(不压缩分组)。窗口函数特别适用于排名分析、趋势计算、移动统计等复杂场景,是处理时间序列数据和多维分析的利器。一、窗口函数的核心概念窗口函数的语法结构:function_name(arg1,arg2...)OVER([PARTITIONBYcol1,col2...]--分
- oracle 分区表 变大,Oracle11G新特性:分区表分区默认segment大小64k变为8M
阳光下的少年
oracle分区表变大
Oracle11G新特性:分区表分区默认segment大小64k变为8M2017-02-08在oracle11.2创建分区表,每个分区默认大小为8M,是由_partition_large_extents参数控制,可以算是11.2.0.2开始的一个新特性,为了减少extent数量,提高分区表性能,而设置的一个参数,默认为true,即分区表的每个extent为8M,和oracle10g相比,会导致同样
- 日入一词_120 present [verb]
cppUncleSix
ThischapterpresentedabriefoverviewofSQLServerpartitioning,includinganintroductiontothekeyconceptsandtermsneededtogainageneralunderstandingofthepartitioningprocess.verb/prɪˈzɛnt/1togivesomethingtosomeo
- 初等数论Ⅱ
christ_lrs
学习笔记数论
Bylby学长2025.7.13讲课记录insmskySummerCamp目录大步小步算法(BSGS)例题T1[TJOI2007]可爱的质数T2[SDOI2011]计算器T3SPOJ3105ModStirling数第二类Stirling数第一类Stirling数Stirling数与幂例题T1CF932ETeamWorkT2CF961GPartitionsT3CF1278FCards大步小步算法(B
- Postgres中窗口函数lag以lead
午天
it数据库postgrespostgres窗口函数数据库lag函数
sql中我们经常会用到聚合函数,聚合之后它会减少数据量,但是如果我们想把聚合之后的数据和原始数据同时展示出来,那么我们需要用到窗口函数。lag窗口函数通过条件把数据划分成子类,在子类中进行排序窗口函数的通用写法selectname,orderdate,cost,sum(cost)over(partitionbyextract(monthfromorderdate)orderbyorderdate)
- Apache Ignite 的 SQL 功能和分布式查询机制
这段内容讲的是ApacheIgnite的SQL功能和分布式查询机制。我们可以从几个关键点来理解:一、Ignite是一个分布式SQL数据库✅特点:符合ANSI-99SQL标准水平扩展(可扩展到多个节点)容错(fault-tolerant)支持两种数据分布方式:分区(Partitioned):数据分布在多个节点上复制(Replicated):每个节点都有完整数据副本二、SQL功能支持✅DML语句:Ig
- Apache Ignite 长事务终止机制
lang20150928
其他apacheIgnite
这段内容讲的是ApacheIgnite中长事务终止机制(LongRunningTransactionsTermination),特别是关于分区映射交换(PartitionMapExchange)与事务超时设置(TransactionTimeout)之间的关系。下面我将从几个方面来帮助你理解:一、什么是PartitionMapExchange?在Ignite集群中,数据是按照分区(Partition
- Spark RDD 之 Partition
博弈史密斯
SparkRDD怎么理解RDD的粗粒度模式?对比细粒度模式SparkRDD的task数量是由什么决定的?一份待处理的原始数据会被按照相应的逻辑(例如jdbc和hdfs的split逻辑)切分成n份,每份数据对应到RDD中的一个Partition,Partition的数量决定了task的数量,影响着程序的并行度支持保存点(checkpoint)虽然RDD可以通过lineage实现faultrecove
- Milvus向量数据库集合操作初尝试
麦克阿建
milvus
目录1.集合(Collection)2.字段(Field)3.索引(Index)4.分区(Partition)5.实体(Entity)6.代码示例6.1集合创建6.2向量插入6.3向量查询6.4向量删除1.集合(Collection)集合是Milvus中存储数据的最基本单元。它类似于数据库中的一个表(table)。集合定义了数据的整体结构,包括数据类型、字段、索引等。作用:集合是你数据的容器,用来
- Saprk中RDD詳解
文子轩
一.常用的transfromRDD算子通過並行化scala創建RDDvalrdd1=sc.parallelize(Array(1,2,3,4,5,6,7,8))查看該RDD的分區數量rdd1.partitions.lengthres23:Int=4使用filter算子valrdd2=sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(*2).sortBy(
- pattern of distributed system 读书笔记- Patterns of Data Partitioning
1FixedPartitions1.1Problem1.1.1requirementsformappingdatatotheclusternodes.Thedistributionshouldbeuniform.Itshouldbepossibletoknowwhichclusternodestoresaparticulardataitemwithoutmakingarequesttoallthe
- Paimon:Range Partition and Sort优化无主键表(Append-Only Table)查询
lifallen
Paimon数据库大数据数据结构javaapache
这个优化是通过对数据进行全局排序,从而让查询时能够跳过大量不相关的数据文件(DataSkipping),极大地减少I/O,提升查询速度。只需要在执行INSERT语句时,通过OPTIONSHint来启用和配置这个功能即可。RangePartitionAndSortForUnawareBucketTableITCase测试文件本身就是最好的例子。比如测试中的这句SQL:INSERTINTOtest_t
- 低版本hive(1.2.1)UDF实现清除历史分区数据
༺水墨石༻
hivehiveUDFhivehadoop数据仓库
目标:通过UDF实现对表历史数据清除入参:表名、保留天数N一、pom文件4.0.0com.examplehive-udf-example1.0-SNAPSHOTjarhive-udf-exampleHiveUDFfordeletingpartitionsbydateUTF-81.81.8org.apache.hivehive-exec1.2.1org.apache.hivehive-metasto
- 弄清Doris/StarRocks分区partition by和分桶distributed by的区别,以及如何选择对应的字段
一、首先,我们先弄清楚数据表中的数据是怎么分布的数据分布建表时,您需要通过设置分区和分桶,指定数据分布方式,并且建议您合理设置分区和分桶,实现数据均匀的分布。数据分布是指数据划分为子集,并按一定规则均衡地分布在不同节点上,能够有效裁剪数据扫描量,最大限度地利用集群的并发性能,从而提升查询性能。数据分布概览常见的数据分布方式现代分布式数据库中,常见的数据分布方式有如下四种:Round-Robin、R
- MySQL窗口函数学习
小菜0-o
mysql学习java
视频链接基本语法窗口限定一个范围,它可以理解为满足某些条件的记录集合,窗口函数也就是在窗口范围内执行的函数。基本语法窗口函数有over关键字,指定函数执行的范围,可分为三部分:分组子句(partitionby),排序子句(orderby),窗口子句(rows)over(partitionbyorderbyrowsbetweenand)窗口函数适用于在不破坏原有表结构的基础上,新增一列窗口的确定分组
- kafka partition分配_走近kafka-Partition分配与消息可靠性
编辑部小李
kafkapartition分配
Kafka的高可用源于其多个副本(replication)。拥有多个副本,那么带来的问题就是数据怎么同步。我们都知道数据是存放在partition物理目录下的文件里面。通过前面几节的介绍,我们也知道消息过来后直接跟partitionleader交互,然后由leader进行数据同步。由于partition的replication机制,在kafka看来partition不分leader和followe
- kafka单个生产者向具有多个partition的topic写数据(写入分区策略)
最近碰到生产环境现象一个flink程序单并行度(一个生产者),对应topic为8分区。每个分区都能消费到生产出的数据。整理知识点如下生产者写入消息到topic,kafka将依据不同的策略将数据分配到不同的分区中1.轮询分区策略2.随机分区策略3.按key分区分配策略4.自定义分区策略1.1轮询分区策略默认的策略,也是使用最多的策略,可以最大限度的保证所有消息平均分配到分区里面如果在生产消息时,ke
- Kafka 数据倾斜原因、影响与权威解决方案
一、数据倾斜的概念在Kafka环境中,数据倾斜是指数据在主题(Topic)的各个分区(Partition)之间分布不均匀的状况。理想情况下,分区设计期望数据能在各个分区均衡分布,如此一来,消费者组内的消费者便可均衡地从不同分区消费数据,从而充分利用系统资源实现高效并行处理。但当数据倾斜发生时,部分分区会承载大量数据,而其他分区的数据量则相对较少。二、数据倾斜产生的原因(一)生产者端原因分区键(Pa
- Flume到Kafka且均分到多个partition
小学僧来啦
FlumeKafkapartitionFlume
@Author:Spinach|GHB@Link:http://blog.csdn.net/bocai8058文章目录说明情况解决方法说明情况Flume向kafka发布数据时,发现kafka接收到的数据总是在一个partition中,而我们希望发布来的数据在所有的partition平均分布。应该怎么做呢?解决方法Flume的官方文档是这么说的:KafkaSinkusesthetopicandkey
- kafka如何让消息均匀的写入到每个partition
野老杂谈
全网最全IT公司面试宝典kafka分布式
在Kafka中,要实现消息均匀写入每个partition,核心是通过合理的分区分配策略让消息在partition间均衡分布。具体机制和实践方式如下:一、Kafka默认的分区分配逻辑(核心机制)Kafka生产者发送消息时,通过Partitioner接口(默认实现为DefaultPartitioner)决定消息写入哪个partition,核心逻辑如下:指定partition时若发送消息时显式指定了pa
- 3-Kafka常用指令
sql2008help
kafka分布式
Kafka常用指令大全一、Topic管理命令功能示例创建Topic指定分区和副本数kafka-topics.sh--create--bootstrap-serverlocalhost:9092--topictest--partitions3--replication-factor2查看Topic列表列出所有Topickafka-topics.sh--bootstrap-serverlocalhos
- 【Kafka】Kafka Producer 分区-05
boy快快长大
中间件kafka分布式
【Kafka】KafkaProducer分区-051.分区的好处2.分区策略2.1默认的分区器DefaultPartitioner3.自定义分区器1.分区的好处(1)便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果。(2)提高并行度,生产者可以以分区为单位发送数据;消
- 各服务日志: Grok正则解析
根哥的博客
Linux系统Elasticsearchlogstash正则表达式
各类日志样例服务类型日志格式Java应用:如Kafka/ES[2025-04-2911:21:12,395]INFO[Logpartition=ck-1,dir=/opt/kafka_2.13-2.8.1/data]Incrementedlogstartoffsetto3591510004duetosegmentdeletion(kafka.log.Log)Tomcat27-Apr-202514:
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。