- Hive使用必知必会系列
王知无(import_bigdata)
Hive系统性学习专栏hivebigdatahdfs
一、Hive的几种数据模型内部表(Table将数据保存到Hive自己的数据仓库目录中:/usr/hive/warehouse)外部表(ExternalTable相对于内部表,数据不在自己的数据仓库中,只保存数据的元信息)分区表(PartitionTable将数据按照设定的条件分开存储,提高查询效率,分区----->目录)桶表(BucketTable本质上也是一种分区表,类似hash分区桶---->
- Milvus 实战全流程
学习路径总览1.Milvus基础知识什么是向量数据库?Milvus的核心概念(collection、field、index、partition、segment)Milvus和Faiss、Annoy、HNSW的区别2.安装与部署Docker快速部署Milvus(推荐)本地开发环境安装使用MilvusLite本地测试3.数据建模与管理创建Collection与Schema定义(包含向量字段和元数据字段
- 《剑指offer》-算法篇-排序
小新学习屋
数据结构与算法算法leetcode职场和发展数据结构与算法
题目最小的K个数数组中的逆序对代码实现最小的K个数题目描述:输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。思路:按照各种排序算法,找到排序结果的前K个数。思路1:最简单的方案,对数组进行排序,取最小的k个思路2:借鉴快速排序的思想,找partition的基准点povit,比较povit和k值的大小思路3:大数据处理的思想,
- kafka的消息存储机制和查询机制
不辉放弃
kafka大数据开发数据库pyspark
Kafka作为高性能的分布式消息队列,其消息存储机制和查询机制是保证高吞吐、低延迟的核心。以下从存储机制和查询机制两方面详细讲解,包含核心原理、关键组件及工作流程。一、Kafka消息存储机制Kafka的消息存储机制围绕高可用、高吞吐、可扩展设计,核心是通过分区、副本、日志分段和索引实现高效存储与管理。1.基本组织单位:主题(Topic)与分区(Partition)主题(Topic):消息的逻辑容器
- 组合问题(分割字符串)
limitless_peter
算法
131.分割回文串-力扣(LeetCode)classSolution{private:vector>result;vectorpath;voidbacktracking(string&s,intstartIndex){if(startIndex>=s.size()){result.push_back(path);return;}for(inti=startIndex;i>partition(st
- Kafka消费者负载均衡策略
⼀个消费者组中的⼀个分⽚对应⼀个消费者成员,他能保证每个消费者成员都能访问,如果组中成员太多会有空闲的成员Kafka消费者负载均衡策略详解从分区分配算法到Rebalance机制,全面解析Kafka如何实现消费者间的负载均衡,并提供调优建议和问题解决方案。1.核心概念术语作用类比ConsumerGroup共享消费任务的消费者组外卖骑手团队PartitionTopic的物理分片配送区域划分Rebala
- 力扣-416.分割等和子集
题目链接416.分割等和子集classSolution{publicbooleancanPartition(int[]nums){intsum=0;for(inti=0;i=0;j--){if(j-nums[i]>=0){//更新dp[j]:比较不放入当前数字和放入当前数字两种情况dp[j]=Math.max(dp[j],dp[j-nums[i]]+nums[i]);}}}returndp[tar
- Hive的窗口函数
VictorWuuu
hivehadoop数据仓库
Hive的窗口函数(WindowFunctions)是其SQL功能的核心亮点之一,用于在分组数据上执行计算,同时保留原始表的行数(不压缩分组)。窗口函数特别适用于排名分析、趋势计算、移动统计等复杂场景,是处理时间序列数据和多维分析的利器。一、窗口函数的核心概念窗口函数的语法结构:function_name(arg1,arg2...)OVER([PARTITIONBYcol1,col2...]--分
- oracle 分区表 变大,Oracle11G新特性:分区表分区默认segment大小64k变为8M
阳光下的少年
oracle分区表变大
Oracle11G新特性:分区表分区默认segment大小64k变为8M2017-02-08在oracle11.2创建分区表,每个分区默认大小为8M,是由_partition_large_extents参数控制,可以算是11.2.0.2开始的一个新特性,为了减少extent数量,提高分区表性能,而设置的一个参数,默认为true,即分区表的每个extent为8M,和oracle10g相比,会导致同样
- 日入一词_120 present [verb]
cppUncleSix
ThischapterpresentedabriefoverviewofSQLServerpartitioning,includinganintroductiontothekeyconceptsandtermsneededtogainageneralunderstandingofthepartitioningprocess.verb/prɪˈzɛnt/1togivesomethingtosomeo
- 初等数论Ⅱ
christ_lrs
学习笔记数论
Bylby学长2025.7.13讲课记录insmskySummerCamp目录大步小步算法(BSGS)例题T1[TJOI2007]可爱的质数T2[SDOI2011]计算器T3SPOJ3105ModStirling数第二类Stirling数第一类Stirling数Stirling数与幂例题T1CF932ETeamWorkT2CF961GPartitionsT3CF1278FCards大步小步算法(B
- Postgres中窗口函数lag以lead
午天
it数据库postgrespostgres窗口函数数据库lag函数
sql中我们经常会用到聚合函数,聚合之后它会减少数据量,但是如果我们想把聚合之后的数据和原始数据同时展示出来,那么我们需要用到窗口函数。lag窗口函数通过条件把数据划分成子类,在子类中进行排序窗口函数的通用写法selectname,orderdate,cost,sum(cost)over(partitionbyextract(monthfromorderdate)orderbyorderdate)
- Apache Ignite 的 SQL 功能和分布式查询机制
这段内容讲的是ApacheIgnite的SQL功能和分布式查询机制。我们可以从几个关键点来理解:一、Ignite是一个分布式SQL数据库✅特点:符合ANSI-99SQL标准水平扩展(可扩展到多个节点)容错(fault-tolerant)支持两种数据分布方式:分区(Partitioned):数据分布在多个节点上复制(Replicated):每个节点都有完整数据副本二、SQL功能支持✅DML语句:Ig
- Apache Ignite 长事务终止机制
lang20150928
其他apacheIgnite
这段内容讲的是ApacheIgnite中长事务终止机制(LongRunningTransactionsTermination),特别是关于分区映射交换(PartitionMapExchange)与事务超时设置(TransactionTimeout)之间的关系。下面我将从几个方面来帮助你理解:一、什么是PartitionMapExchange?在Ignite集群中,数据是按照分区(Partition
- Spark RDD 之 Partition
博弈史密斯
SparkRDD怎么理解RDD的粗粒度模式?对比细粒度模式SparkRDD的task数量是由什么决定的?一份待处理的原始数据会被按照相应的逻辑(例如jdbc和hdfs的split逻辑)切分成n份,每份数据对应到RDD中的一个Partition,Partition的数量决定了task的数量,影响着程序的并行度支持保存点(checkpoint)虽然RDD可以通过lineage实现faultrecove
- Milvus向量数据库集合操作初尝试
麦克阿建
milvus
目录1.集合(Collection)2.字段(Field)3.索引(Index)4.分区(Partition)5.实体(Entity)6.代码示例6.1集合创建6.2向量插入6.3向量查询6.4向量删除1.集合(Collection)集合是Milvus中存储数据的最基本单元。它类似于数据库中的一个表(table)。集合定义了数据的整体结构,包括数据类型、字段、索引等。作用:集合是你数据的容器,用来
- Saprk中RDD詳解
文子轩
一.常用的transfromRDD算子通過並行化scala創建RDDvalrdd1=sc.parallelize(Array(1,2,3,4,5,6,7,8))查看該RDD的分區數量rdd1.partitions.lengthres23:Int=4使用filter算子valrdd2=sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(*2).sortBy(
- pattern of distributed system 读书笔记- Patterns of Data Partitioning
1FixedPartitions1.1Problem1.1.1requirementsformappingdatatotheclusternodes.Thedistributionshouldbeuniform.Itshouldbepossibletoknowwhichclusternodestoresaparticulardataitemwithoutmakingarequesttoallthe
- Paimon:Range Partition and Sort优化无主键表(Append-Only Table)查询
lifallen
Paimon数据库大数据数据结构javaapache
这个优化是通过对数据进行全局排序,从而让查询时能够跳过大量不相关的数据文件(DataSkipping),极大地减少I/O,提升查询速度。只需要在执行INSERT语句时,通过OPTIONSHint来启用和配置这个功能即可。RangePartitionAndSortForUnawareBucketTableITCase测试文件本身就是最好的例子。比如测试中的这句SQL:INSERTINTOtest_t
- 低版本hive(1.2.1)UDF实现清除历史分区数据
༺水墨石༻
hivehiveUDFhivehadoop数据仓库
目标:通过UDF实现对表历史数据清除入参:表名、保留天数N一、pom文件4.0.0com.examplehive-udf-example1.0-SNAPSHOTjarhive-udf-exampleHiveUDFfordeletingpartitionsbydateUTF-81.81.8org.apache.hivehive-exec1.2.1org.apache.hivehive-metasto
- 弄清Doris/StarRocks分区partition by和分桶distributed by的区别,以及如何选择对应的字段
一、首先,我们先弄清楚数据表中的数据是怎么分布的数据分布建表时,您需要通过设置分区和分桶,指定数据分布方式,并且建议您合理设置分区和分桶,实现数据均匀的分布。数据分布是指数据划分为子集,并按一定规则均衡地分布在不同节点上,能够有效裁剪数据扫描量,最大限度地利用集群的并发性能,从而提升查询性能。数据分布概览常见的数据分布方式现代分布式数据库中,常见的数据分布方式有如下四种:Round-Robin、R
- MySQL窗口函数学习
小菜0-o
mysql学习java
视频链接基本语法窗口限定一个范围,它可以理解为满足某些条件的记录集合,窗口函数也就是在窗口范围内执行的函数。基本语法窗口函数有over关键字,指定函数执行的范围,可分为三部分:分组子句(partitionby),排序子句(orderby),窗口子句(rows)over(partitionbyorderbyrowsbetweenand)窗口函数适用于在不破坏原有表结构的基础上,新增一列窗口的确定分组
- kafka partition分配_走近kafka-Partition分配与消息可靠性
编辑部小李
kafkapartition分配
Kafka的高可用源于其多个副本(replication)。拥有多个副本,那么带来的问题就是数据怎么同步。我们都知道数据是存放在partition物理目录下的文件里面。通过前面几节的介绍,我们也知道消息过来后直接跟partitionleader交互,然后由leader进行数据同步。由于partition的replication机制,在kafka看来partition不分leader和followe
- kafka单个生产者向具有多个partition的topic写数据(写入分区策略)
最近碰到生产环境现象一个flink程序单并行度(一个生产者),对应topic为8分区。每个分区都能消费到生产出的数据。整理知识点如下生产者写入消息到topic,kafka将依据不同的策略将数据分配到不同的分区中1.轮询分区策略2.随机分区策略3.按key分区分配策略4.自定义分区策略1.1轮询分区策略默认的策略,也是使用最多的策略,可以最大限度的保证所有消息平均分配到分区里面如果在生产消息时,ke
- Kafka 数据倾斜原因、影响与权威解决方案
一、数据倾斜的概念在Kafka环境中,数据倾斜是指数据在主题(Topic)的各个分区(Partition)之间分布不均匀的状况。理想情况下,分区设计期望数据能在各个分区均衡分布,如此一来,消费者组内的消费者便可均衡地从不同分区消费数据,从而充分利用系统资源实现高效并行处理。但当数据倾斜发生时,部分分区会承载大量数据,而其他分区的数据量则相对较少。二、数据倾斜产生的原因(一)生产者端原因分区键(Pa
- Flume到Kafka且均分到多个partition
小学僧来啦
FlumeKafkapartitionFlume
@Author:Spinach|GHB@Link:http://blog.csdn.net/bocai8058文章目录说明情况解决方法说明情况Flume向kafka发布数据时,发现kafka接收到的数据总是在一个partition中,而我们希望发布来的数据在所有的partition平均分布。应该怎么做呢?解决方法Flume的官方文档是这么说的:KafkaSinkusesthetopicandkey
- kafka如何让消息均匀的写入到每个partition
野老杂谈
全网最全IT公司面试宝典kafka分布式
在Kafka中,要实现消息均匀写入每个partition,核心是通过合理的分区分配策略让消息在partition间均衡分布。具体机制和实践方式如下:一、Kafka默认的分区分配逻辑(核心机制)Kafka生产者发送消息时,通过Partitioner接口(默认实现为DefaultPartitioner)决定消息写入哪个partition,核心逻辑如下:指定partition时若发送消息时显式指定了pa
- 3-Kafka常用指令
sql2008help
kafka分布式
Kafka常用指令大全一、Topic管理命令功能示例创建Topic指定分区和副本数kafka-topics.sh--create--bootstrap-serverlocalhost:9092--topictest--partitions3--replication-factor2查看Topic列表列出所有Topickafka-topics.sh--bootstrap-serverlocalhos
- 【Kafka】Kafka Producer 分区-05
boy快快长大
中间件kafka分布式
【Kafka】KafkaProducer分区-051.分区的好处2.分区策略2.1默认的分区器DefaultPartitioner3.自定义分区器1.分区的好处(1)便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果。(2)提高并行度,生产者可以以分区为单位发送数据;消
- 各服务日志: Grok正则解析
根哥的博客
Linux系统Elasticsearchlogstash正则表达式
各类日志样例服务类型日志格式Java应用:如Kafka/ES[2025-04-2911:21:12,395]INFO[Logpartition=ck-1,dir=/opt/kafka_2.13-2.8.1/data]Incrementedlogstartoffsetto3591510004duetosegmentdeletion(kafka.log.Log)Tomcat27-Apr-202514:
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,