C++入门

C++ 入门

1.C++关键字(C++98)

C++总计63个关键字,C语言32个关键字
ps:下面我们只是看一下C++有多少关键字,不对关键字进行具体讲解。后面我们学到以后再细讲。
C++入门_第1张图片

2.命名空间

在C/C++中,变量,函数和和后面要学到的类都是大量存在的,这些变量、函数和类的名称都将存在全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字污染, namespace关键字的出现就是针对这种问题的

#include 
#include 
int rand = 10;
// C语言没办法解决类似这样的命名冲突问题,所以C++提出了namespace来解决
int main()
{
 printf("%d\n", rand);
return 0;
}
// 编译后后报错:error C2365: “rand”: 重定义;以前的定义是“函数”

2.1命名空间定义

定义命名空间,需要使用namespace关键字,后面跟命名空间的名字,然后接一对{}即可,{}中即为命名空间的成员。

// bit是命名空间的名字,一般开发中是用项目名字做命名空间名。
// 我们上课用的是bit,大家下去以后自己练习用自己名字缩写即可,如张三:zs
// 1. 正常的命名空间定义
namespace bit
{
 // 命名空间中可以定义变量/函数/类型
 int rand = 10;
 int Add(int left, int right)
 {
 return left + right;
 }
比特就业课
注意:一个命名空间就定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中
2.2 命名空间使用
命名空间中成员该如何使用呢?比如:
 struct Node
 {
 struct Node* next;
 int val;
 };
}
//2. 命名空间可以嵌套
// test.cpp
namespace N1
{
int a;
int b;
int Add(int left, int right)
 {
     return left + right;
 }
namespace N2
 {
     int c;
     int d;
     int Sub(int left, int right)
     {
         return left - right;
     }
 }
}
//3. 同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。
// ps:一个工程中的test.h和上面test.cpp中两个N1会被合并成一个
// test.h
namespace N1
{
int Mul(int left, int right)
 {
     return left * right;
 }
}

注意:一个命名空间就定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中

2.2命名空间使用

命名空间中成员该如何使用呢?比如

namespace bit
{
 // 命名空间中可以定义变量/函数/类型
 int a = 0;
 int b = 1;
 int Add(int left, int right)
 {
 return left + right;
 }
 struct Node
 {
 struct Node* next;
 int val;
 };
}
int main()
{
 // 编译报错:error C2065: “a”: 未声明的标识符
 printf("%d\n", a);
return 0;
}

命名空间的使用有三种方式:

  1. 加命名空间名称及作用域限定符
int main()
{
   printf("%d\n", N::a);
   return 0;    
}
  1. 使用using将命名空间中某个成员引入
using N::b;
int main()
{
   printf("%d\n", N::a);
   printf("%d\n", b);
   return 0;    
}
  1. 使用using namespace 命名空间名称引入
using namespce N;
int main()
{
   printf("%d\n", N::a);
   printf("%d\n", b);
   Add(10, 20);
   return 0;    
}

3.C++输入&输出

#include
// std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中
using namespace std;
int main()
{
cout<<"Hello world!!!"<<endl;
return 0;
}

说明:

  1. 使用cout标准输出对象(控制台)和cin标准输入对象(键盘)时,必须包含头文件以及按命名空间使用方法使用std。
  2. cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出,他们都包含在包含头文件中。
  3. <<是流插入运算符,>>是流提取运算符。
  4. 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。C++的输入输出可以自动识别变量类型。
  5. 实际上cout和cin分别是ostream和istream类型的对象,>> 和<<也涉及运算符重载等知识,以后还需要深入学习IO流用法及原理
    注意:早期标准库将所有功能在全局域中实现,声明在.h后缀的头文件中,使用时只需包含对应头文件即可,后来将其实现在std命名空间下,为了和C头文件区分,也为了正确使用命名空间,规定C++头文件不带.h;旧编译器中还支持格式,后续编译器已不支持,因此推荐使用+std的方式。
#include 
using namespace std;
int main()
{
  int a;
  double b;
  char c;
    
  // 可以自动识别变量的类型
  cin>>a;
  cin>>b>>c;
    
  cout<<a<<endl;
  cout<<b<<" "<<c<<endl;
  return 0;
}

std命名空间的使用惯例:
std是C++标准库的命名空间,如何展开std使用更合理呢?

1.在日常练习中,建议直接使用using namespace std 即可, 这样就很方便。
2.using namespace std 展开,标准库就全部暴露出来了,如果我们定义跟库重名的;类型/对象/函数,就存在冲突问题。该问题在日常练习中很少出现,但是项目开发中代码较多、规模大, 就很容易出现。

4.默认参数

4.1默认参数概念

默认参数是声明或定义函数时为函数的参数指定一个默认值。在调用该函数的时候,如果没有指定实参则采用该形参的默认值,否则使用指定的实参。

void Func(int a = 0)
{
   cout<<a<<endl;
}
int main()
{
   Func();     // 没有传参时,使用参数的默认值
   Func(10);   // 传参时,使用指定的实参
   return 0;
}

4.2默认参数分类

  • 全默认参数
void Func(int a = 10, int b = 20, int c = 30)
{
    cout<<"a = "<<a<<endl;
    cout<<"b = "<<b<<endl;
    cout<<"c = "<<c<<endl;
}
  • 半默认参数
void Func(int a, int b = 10, int c = 20)
{
    cout<<"a = "<<a<<endl;
    cout<<"b = "<<b<<endl;
    cout<<"c = "<<c<<endl;
}

注意:
1.半默认参数必须从右往左依次来给出,不能间隔着给
2.默认参数不能在函数声明和定义中同时出现

  //a.h
  void Func(int a = 10);
  
  // a.cpp
  void Func(int a = 20)
 {}
  
  // 注意:如果生命与定义位置同时出现,恰巧两个位置提供的值不同,那编译器就无法确定到底该用那个缺省值。

3.默认参数必须是常量或者全局变量
4.C语言不支持(编译器不支持)

5.函数重载

自然语言中,一个词可以有多重含义,人们可以从上下文来判断该词真实含义,即该词被重载了。

5.1函数重载概念

函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数 或 类型 或 类型顺序)不同,常用来处理实现功能类似数据类似不同的问题。

#include
using namespace std;
// 1、参数类型不同
int Add(int left, int right)
{
   cout << "int Add(int left, int right)" << endl;
   return left + right;
}
double Add(double left, double right)
{
   cout << "double Add(double left, double right)" << endl;
   return left + right;
}
// 2、参数个数不同
void f()
{
   cout << "f()" << endl;
}
void f(int a)
{
   cout << "f(int a)" << endl;
}
// 3、参数类型顺序不同
void f(int a, char b)
{
   cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{
   cout << "f(char b, int a)" << endl;
}
int main()
{
     Add(10, 20);
     Add(10.1, 20.2);
     f();
     f(10);
     f(10, 'a');
     f('a', 10);
 return 0;
}

5.2 C++支持函数重载的原理- 名字修饰(name Mangling)

为什么C++支持函数重载,而C语言不支持函数重载呢?
在C/C++中,一个程序要运行起来,需要经历一下几个阶段:预处理,编译, 汇编,链接。
C++入门_第2张图片
C++入门_第3张图片

  • 实际项目通常是由多个头文件和多个源文件构成,而通过C语言阶段学习的编译链接,我们可以知道,【当前a.cpp中调用了b.cpp中定义的Add函数时】,编译后链接前,a.o的目标文件中没有Add的函数地址,因为Add是在b.cpp中定义的,所以Add的地址在b.o中。那么怎么办呢?

  • 所以链接阶段就是专门处理这种问题,链接器看到a.o调用Add,但是没有Add的地址,就会到到b.o的符号表中找Add的地址,然后链接到一起

  • 那么链接时,面对Add函数,链接器会使用那个名字去找呢?这里每个编译器都有自己的函数名修饰规则。

  • 由于Windows下vs的修饰规则过于复杂,而Linux下g++的修饰规则就很简单易懂。下面是G++演示了这个修饰后的名字。

  • 通过下面我们可以看出gcc的函数修饰后名字不变。而g++的函数修饰后变成【Z+函数长度+函数名+类型首字母】

  • 采用C语言编译器编译后结果
    C++入门_第4张图片
    结论:在Linux下,采用GCC编译完成后,函数名字的修饰没有发生变化。

  • 采用C++编译器编译后的结果
    C++入门_第5张图片
    结论:在Linux下,采用G++编译完成后,函数名字的修饰发生了改变,编译器将函数参数类型信息添加到修改后的名字中。

  • Windows下名字修饰规则
    C++入门_第6张图片

6.引用

6.1 引用概念

引用不是新定义一个变量,而是给已存在变量去了一个别名,编译器不会为引用变量开辟空间,它和它引用的变量共用同一块内存空间。
类型& 引用变量名(对象名)= 引用实体;

voidTestRef()
{
    int a=10;
    int& ra=a;//<====定义引用类型
    printf("%p\n",&a);
    printf("%p\n",&ra);
}

注意:引用类型必须和引用实体是同种类型的

6.2引用特性

1.引用在定义时必须初始化
2.一个变量可以有多个引用
3.引用一旦引用一个实体,再不能引用其他实体

voidTestRef()
{
    int a=10;
    // int& ra;   //该条语句编译时会出错
    int& ra=a;
    int& rra=a;
    printf("%p  %p  %p\n",&a,&ra,&rra);
}

6.3常引用

voidTestConstRef()
{
    const int a=10;
    //int& ra = a;   //该语句编译时会出错,a为常量
    const int& ra=a;
    // int& b = 10;  //该语句编译时会出错,b为常量
    const int& b=10;
    double d=12.34;
    //int& rd = d;  //该语句编译时会出错,类型不同
    const int& rd=d;
}

6.4 使用场景

1.做参数

void Swap(int& left, int& right)
{
    int temp = left;
    left = right;
    right = temp;
}

2.做返回值

int& Count()
{
    static int n = 0;
    n++;
    // ...
    return n;
}

C++入门_第7张图片
注意:函数如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用引用返回,如果已经还给系统了,则必须使用传值返回

6.5 传值,传引用性能比较

以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直
接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效
率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低

#include 
struct A{ int a[10000]; };
void TestFunc1(A a){}
void TestFunc2(A& a){}
void TestRefAndValue()
{
   A a;
   // 以值作为函数参数
   size_t begin1 = clock();
   for (size_t i = 0; i < 10000; ++i)
   TestFunc1(a);
   size_t end1 = clock();
   // 以引用作为函数参数
   size_t begin2 = clock();
   for (size_t i = 0; i < 10000; ++i)
   TestFunc2(a);
    size_t end2 = clock();
    // 分别计算两个函数运行结束后的时间
    cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;
    cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}
6.5.2 值和引用作为返回值类型的性能比较
#include 
struct A{ int a[10000]; };
A a;
// 值返回
A TestFunc1() { return a;}
// 引用返回
A& TestFunc2(){ return a;}
void TestReturnByRefOrValue()
{
    // 以值作为函数的返回值类型
    size_t begin1 = clock();
    for (size_t i = 0; i < 100000; ++i)
    TestFunc1();
    size_t end1 = clock();
    // 以引用作为函数的返回值类型
    size_t begin2 = clock();
    for (size_t i = 0; i < 100000; ++i)
    TestFunc2();
    size_t end2 = clock();
    // 计算两个函数运算完成之后的时间
    cout << "TestFunc1 time:" << end1 - begin1 << endl;
    cout << "TestFunc2 time:" << end2 - begin2 << endl;
}

通过上述代码的比较,发现传值和指针在作为传参以及返回值类型上效率相差很大。

6.6 引用和指针的区别

在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。

int main()
{
    int a = 10;
    int& ra = a;
    cout<<"&a = "<<&a<<endl;
    cout<<"&ra = "<<&ra<<endl;
    return 0;
}

在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。

int main()
{
    int a = 10;
    int& ra = a;
    ra = 20;
    int* pa = &a;
    *pa = 20;
    return 0;
}

我们来看下引用和指针的汇编代码对比:
C++入门_第8张图片
引用和指针的不同点:

  1. 引用概念上定义一个变量的别名,指针存储一个变量地址。
  2. 引用在定义时必须初始化,指针没有要求
  3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何
    一个同类型实体
  4. 没有NULL引用,但有NULL指针
  5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32
    位平台下占4个字节)
  6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小
  7. 有多级指针,但是没有多级引用
  8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理
  9. 引用比指针使用起来相对更安全

7. 内联

7.1内联概念

以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率
C++入门_第9张图片
如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的
调用。
查看方式:

  1. 在release模式下,查看编译器生成的汇编代码中是否存在call Add
  2. 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不
    会对代码进行优化,以下给出vs2013的设置方式)

C++入门_第10张图片
C++入门_第11张图片

7.2 特性

  1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。
  2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。下图为《C++prime》第五版关于inline的建议:
    C++入门_第12张图片
  3. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会找不到
// F.h
#include 
using namespace std;
inline void f(int i);
// F.cpp
#include "F.h"
void f(int i)
{
   cout << i << endl;
}
// main.cpp
#include "F.h"
int main()
{
   f(10);
   return 0;
}
// 链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdecl
f(int)" (?f@@YAXH@Z),该符号在函数 _main 中被引用

8.auto 关键字(c++11)

8.1类型别名思考

随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:
1.类型难于拼写
2.含义不明确导致容易出错

#include 
#include 
int main()
{
     std::map<std::string, std::string> m{ { "apple", "苹果" }, { "orange","橙子" },{"pear","梨"} };
     std::map<std::string, std::string>::iterator it = m.begin();
     while (it != m.end())
     {
     //....
     }
     return 0;
}

std::map::iterator 是一个类型,但是该类型太长了,特别容
易写错。聪明的同学可能已经想到:可以通过typedef给类型取别名,比如:

#include 
#include 
typedef std::map<std::string, std::string> Map;
int main()
{
    Map m{ { "apple", "苹果" },{ "orange", "橙子" },{"pear","梨"} };

    Map::iterator it = m.begin();
    while (it != m.end())
    {
        //....
    }
    return 0;
}

使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题:

typedef char* pstring;
int main()
{
   const pstring p1; // 编译成功还是失败?
   const pstring* p2; // 编译成功还是失败?
   return 0;
}

在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义。

8.2 auto 简介

在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它,大家可思考下为什么?
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得

int TestAuto()
{
   return 10;
}
int main()
{
    int a = 10;
    auto b = a;
    auto c = 'a';
    auto d = TestAuto();
    cout << typeid(b).name() << endl;
    cout << typeid(c).name() << endl;
    cout << typeid(d).name() << endl;
    //auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
    return 0;
}

【注意】
使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编
译期会将auto替换为变量实际的类型

8.3 auto的使用细则

1.auto与指针和引用结合起来使用
用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&

int main()
{
    int x = 10;
    auto a = &x;
    auto* b = &x;
    auto& c = x;
    cout << typeid(a).name() << endl;
    cout << typeid(b).name() << endl;
    cout << typeid(c).name() << endl;
    *a = 20;
    *b = 30;
    c = 40;
    return 0;
}
  1. 在同一行定义多个变量
    当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量
void TestAuto()
{
    auto a = 1, b = 2;
    auto c = 3, d = 4.0; // 该行代码会编译失败,因为c和d的初始化表达式类型不同
}

8.3 auto 不能推到的场景

  1. auto不能作为函数的参数
// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
void TestAuto(auto a)
{}
  1. auto不能直接用来声明数组
void TestAuto()
{
    int a[] = {1,2,3};
    auto b[] = {456};
}
  1. 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法
  2. auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有lambda表达式等进行配合使用。

9.基于范围的for循环(C++11)

9.1范围for的语法

在C++98中如果要遍历一个数组,可以按照以下方式进行:

void TestFor()
{
    int array[] = { 1, 2, 3, 4, 5 };
    for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
    array[i] *= 2;
    for (int* p = array; p < array + sizeof(array)/    sizeof(array[0]); ++p)
    cout << *p << endl;
}

对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因
此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围

void TestFor()
{
    int array[] = { 1, 2, 3, 4, 5 };
    for(auto& e : array)
    e *= 2;
    for(auto e : array)
    cout << e << " ";
    return 0;
}

注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。

9.2 范围for的使用条件

  1. for循环迭代的范围必须是确定的
    对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供begin和end的方法,begin和end就是for循环迭代的范围。注意:以下代码就有问题,因为for的范围不确定
void TestFor(int array[])
{
    for(auto& e : array)
    cout<< e <<endl;
}
  1. 迭代的对象要实现++和==的操作。(关于迭代器这个问题,以后会讲,现在提一下,没办法讲清楚,现在大家了解一下就可以了)

10 空指针nullptr(C++11)

10.1 C++98中的指针空值

在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:

void TestPtr()
{
    int* p1 = NULL;
    int* p2 = 0;
    // ……
}

NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:

#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif

可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采取何种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:

void f(int)
{
    cout<<"f(int)"<<endl;
}
void f(int*)
{
   cout<<"f(int*)"<<endl;
}
int main()
{
    f(0);
    f(NULL);
    f((int*)NULL);
    return 0;
}

程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的
初衷相悖。在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void*)0。
注意:
1.在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为关键字引入的。
2.在C++11中,sizeof(nullptr)与sizeof((void*)0)所占字节数相同。
3.为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。

你可能感兴趣的:(c++,开发语言)