- Pandas:数据科学的超级瑞士军刀
科技林总
DeepSeek学AI人工智能
**——从零基础到高效分析的进化指南**###**一、Pandas诞生:数据革命的救世主****2010年前的数据分析噩梦**:```python#传统Python处理表格数据data=[]forrowincsv_file:ifrow[3]>100androw[2]=="China":data.append(float(row[5])#代码冗长易错!```**核心痛点**:-Excel处理百万行崩
- 使用Python操作Excel,删重复数据及keep参数用法并保存的例子
白帽黑客艾登
pythonexcel开发语言Python编程Python学习技能分享
01Ex按列标题删重复的数据解析:我们使用了pandas库读取Excel文件,并使用drop_duplicates()函数删除重复数据。其中,subset参数指定了删除重复数据的列(列名),keep参数指定了保留哪个重复记录(默认为第一个记录)。inplace=True参数表示在原始数据上进行操作。最后,我们使用to_excel()函数将处理后的数据,保存到一个新的Excel文件中,其中index
- 【Python高阶开发】1. Pandas工业级时序数据处理实战:从振动传感器数据到轴承故障预警系统
AI_DL_CODE
pythonpandas时序数据处理振动传感器工业数据清洗特征工程
摘要:在工业设备健康监测中,振动传感器数据是评估设备状态的核心依据,但高频噪声干扰、数据传输缺失、多设备时间戳错位等问题严重影响分析准确性。本文基于PythonPandas构建工业级时序数据处理流水线,提出"时间校正-缺失填充-噪声过滤-特征提取"四步清洗法,针对工业场景设计专用策略:短时缺失采用线性插值、长时缺失标记异常,振动数据结合移动平均与Z-score检测保留真实特征。通过时域(峰值、峭度
- 使用 PyTorch 和 Pandas 进行 Kaggle 房价预测
Clang's Blog
AIpytorchpandas人工智能
文章目录1、环境设置2、数据下载3、数据预处理4、模型构建5、训练和验证6、训练模型并生成预测结果7、完整代码在本篇博文中,我们将探索如何使用PyTorch和Pandas库,构建一个用于Kaggle房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。1、环境设置我们首先需要导入所需的库,包括用于数据处理的pandas和numpy,以及用于深度学习的torch。i
- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- 【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博文章数据可视化分析-文章分类下拉框实现
java1234_小锋
NLPNLLP微博舆情分析python自然语言处理flask
大家好,我是java1234_小锋老师,最近写了一套【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)视频教程,持续更新中,计划月底更新完,感谢支持。今天讲解微博文章数据可视化分析-文章分类下拉框实现视频在线地址:2026版【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts+爬虫)视频教程(火爆连载更
- 【Python】pandas.cut()函数的用法
pandas.cut()函数是一个非常有用的工具,用于将数值型数据按照指定的分箱或区间进行分割,从而将连续的数值变量转换为离散的类别变量。这在数据分析和机器学习的特征工程中尤其有用,因为它可以帮助揭示不同区间内的数据分布特征,或者简化模型的输入。基本用法pandas.cut()的基本语法如下:pandas.cut(x,bins,right=True,labels=None,retbins=Fals
- Python Pandas.cut函数解析与实战教程
皓月照山川
pandaspythonpandas开发语言
PythonPandas.cut函数解析与实战教程摘要pandas.cut是数据分析工具库Pandas中一个极其强大且常用的函数。它的核心功能是将连续的数值型数据根据指定的间断点(bins)进行分割,转换成离散化的区间类别(categoricaldata)。这种操作在数据预处理、特征工程和数据可视化中至关重要,例如,将用户的年龄分段、将考试分数评级、或将销售额划分为不同的等级。本文章将从基础用法到
- 实践篇:构建基于LLM与本地Pandas的混合式数据分析引擎
超人阿亚
pandas数据分析数据挖掘
公众号:dify实验室基于LLMOps平台-Dify的一站式学习平台。包含不限于:Dify工作流案例、DSL文件分享、模型接入、Dify交流讨论等各类资源分享。在上一篇《思路探索:当大型语言模型遇见数据分析的现实挑战》中,我们阐述了团队确立的技术路线:利用大型语言模型(LLM)作为自然语言到代码的“翻译器”,并结合PythonPandas库作为后端的高性能“计算核心”。本文将从工程实践的角度,详细
- python小工具合集
Aronup
pythonexcel开发语言
小工具合集1.python切分excel2.python检查excel输出每列最大长度[目录下所有文件or目录下每个文件]1.python切分excel"""@Project:pythonProject@File:splitFile.py@IDE:PyCharm@Author:alice@Date:2025/3/2113:48"""importpandasaspdimportosdefsplit_
- pandas.to_sql mysql_pandas to_sql
weixin_39929595
pandas.to_sqlmysql
实例:importpymysqlimportpandasaspdimportnumpyasnpfromsqlalchemyimportcreate_enginedf=pd.DataFrame([[1,"Bob",0],[2,"Kim",1]],columns=["id","name","sex"])dfidnamesex01Bob012Kim1fromsqlalchemyimportcreate_
- pandas 读取sqlserver_Python中pandas函数操作数据库
将pandas的DataFrame数据写入MySQL+sqlalchemypython强大的处理数据的能力很大一部分来自Pandas,pandas不仅限于读取本地的离线文件,也可以在线读取数据库的数据,处理后再写回数据库中。pandas主要是以sqlalchemy方式与数据库建立链接,支持Mysql、postgresql、Oracle、MSSQLServer、SQLite等主流数据库。一:创建链接
- DataFrame(数据框)
追逐此刻
SQLsql
一种二维表格型数据结构,类似于电子表格(如Excel)或SQL表,由行(记录)和列(字段)组成。它是数据分析、机器学习和科学计算中最常用的数据结构之一,尤其在Python的Pandas库中被广泛使用。1.DataFrame的核心特点特点说明二维结构类似表格,有行(记录)和列(字段)。列名(ColumnNames)每列有一个名称(如name,age,salary)。行索引(Index)每行有一个索引
- day 34 打卡
weixin_39908253
AI学习笔记python机器学习
day21常见的降维算法#先运行之前预处理好的代码importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings('ignore')#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']pl
- 论文复现 Rank consistent ordinal regression for neural networks withapplication to age estimation
DeniuHe
Pytorch算法
importtorchimporttorch.nn.functionalasFfromtorchimportnnfromtorch.autogradimportVariableimportpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccurac
- Pytorch实现目标检测
importosimportrandomimportpandasaspdimportnumpyasnpimportcv2fromsklearn.model_selectionimporttrain_test_splitimporttorchfromtorch.utils.dataimportDataset,DataLoaderimporttorch.nnasnnimporttorch.nn.fun
- 【Python高阶开发】2. Dask分布式加速实战:TB级生产日志分析效率提升指南
摘要:随着工业4.0的深入推进,工业生产日志数据量呈指数级增长,某汽车制造厂日均产生2TB生产日志,传统单机Pandas处理面临内存不足、耗时过长、资源利用率低三大瓶颈。本文基于Dask分布式计算框架,构建工业级日志分析解决方案,通过“集群部署-高效加载-数据处理-性能优化”四步法,实现日志分析效率5倍提升。详细阐述Dask核心原理(任务调度、延迟计算、数据分区),对比单机与分布式架构差异,提供从
- 如何在 Python 中高效处理大数据:Pandas 的实战技巧
程序员威哥
python大数据pandas
随着数据量的不断增大,Python成为数据科学和数据分析领域最受欢迎的编程语言之一。Pandas,作为Python中处理数据的强大库,以其简洁易用和强大的功能,成为数据分析的首选工具。然而,随着数据量的急剧增长,如何高效地处理和分析大数据成为了一个关键问题。本文将深入解析如何利用Pandas高效处理大数据,探索一些实用的技巧,帮助你提升数据处理性能和优化内存使用,让你能够在大数据分析中游刃有余。1
- python学习DAY4打卡
星仔编程
python学习打卡学习
DAY4缺失值的处理题目:初识pandas库与缺失数据的补全pandas是Python里一个强大且广泛使用的开源数据分析与处理库按照示例代码的要求,去尝试补全信贷数据集中的数值型缺失值打开数据(csv文件、excel文件)查看数据(尺寸信息、查看列名等方法)查看空值众数、中位数填补空值利用循环补全所有列的空值完成后在py文件中独立完成一遍,并且利用debugger工具来查看属性(不借助函数显式查看
- python学习Day5打卡
WYH49
学习
day5离散特征的独热编码先按照示例代码过一遍,然后完成下列题目现在在py文件中一次性处理data数据中所有的连续变量和离散变量1.读取data数据importpandasaspddata=pd.read_csv(r"C:\Users\LENOVO\Desktop\daim\data.csv")fordesribe_featuresindata.columns:ifdata[desribe_fea
- python学习DAY22打卡
星仔编程
python学习打卡学习
作业:自行学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码kaggle泰坦尼克号人员生还预测importwarningswarnings.filterwarnings("ignore")#忽略警告信息#数据处理清洗包importpandasaspdimportnumpyasnpimportrandomasrnd#可视化包importseabornassnsimportmatp
- 推荐系统如何开发
一行代码通万物
python人工智能推荐系统
推荐系统实现了基于协同过滤的推荐功能支持两种推荐模式:基于用户的协同过滤(寻找相似用户喜欢的物品)基于物品的协同过滤(寻找相似物品)主要功能:数据加载(支持自定义数据或内置的MovieLens数据集)模型训练模型评估(计算RMSE和MAE指标)为指定用户生成推荐列表使用前需要安装依赖库:pipinstallsurprisepandasnumpy可以通过修改sim_options参数来调整相似度计算
- pandas库 DataFrame的常见操作
目录一.Pandas库的核心特点与应用场景1.表格数据处理2.与NumPy的区别3.数据转换二.Pandas与OpenPyXl的对比三.DataFrame与Series数据类型四.DataFrame常用操作排序:df.sort_values(by='列名',ascending=False)按指定列降序排序,整行数据同步调整,当参数值为ture时则为升序排序或默认升序排序数据替换:df['列名'].
- 数据分析利器:Pandas数据处理实战指南
程序员Bears
Python全栈成长笔记数据分析pandas数据挖掘
一、Pandas简介:数据分析的瑞士军刀Pandas是Python数据分析的核心库,它提供了两种主要数据结构:Series:一维带标签数组DataFrame:二维表格型数据结构(类似Excel表格)importpandasaspd#创建示例DataFramedata={'姓名':['张三','李四','王五'],'年龄':[25,30,28],'城市':['北京','上海','广州']}df=pd
- Python 玩转 Excel:四大神器横向评测与实战指南
在数据驱动的时代,每天有超过3亿人使用Excel处理数据,但面对复杂报表、批量处理等场景时,传统操作往往力不从心。Python作为数据处理的瑞士军刀,与Excel的深度整合能力正在掀起一场办公效率革命。本文将深入剖析四大主流Python-Excel工具的技术特性,带您解锁自动化办公的终极形态。一、四大核心工具特性速览1.Pandas(数据分析之王)作为NumFOCUS基金会支持的项目,Pandas
- 数据分析必备神器:Pandas入门实战指南(零基础也能起飞[特殊字符])
文章目录一、为什么Pandas是数据分析的神器?Pandas的三大超能力:二、5分钟极速上手(附实战代码)三、职场人必学的五个骚操作3.1数据清洗黑科技3.2多文件合并技巧3.3智能分组统计3.4时间序列分析3.5表格颜值改造四、避坑指南(血泪教训)4.1内存爆炸陷阱4.2索引混乱之谜4.3SettingWithCopy幽灵警告五、学习路线图(亲测有效)朋友们!!!今天咱们聊聊Python数据分析
- pandas 的数据类型简单介绍-Series 与 DataFrame
江南野栀子
#Python数据分析pythonpandas数据分析
目录1.Series1.1Series定义1.2Series构造2.DataFrame2.1DataFrame定义2.2DataFrame构造2.2.1使用pandas.DataFrame函数2.2.2使用pandas.DataFrame.from_dict函数2.2.3使用pandas.DataFrame.from_records函数2.2.4从csv、Excel、txt、mysql等等处获得数
- Python 数据分析课程学习总结:从理论到实践的进阶之路
作为一名大学生,在2024-2025学年下学期接触《Python数据分析》这门课程时,我对数据分析的认知还停留在“用Excel做简单统计”的层面。但经过一学期的学习,我不仅掌握了Python数据分析的核心工具,更培养了用数据思维解决问题的能力。以下是我从知识吸收、实践打磨到思维重塑的完整学习总结。一、工具学习:从陌生到熟悉的跨越(一)Pandas:数据处理的得力助手最开始接触Pandas的时候,感
- 【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 主页-评论用户时间占比环形饼状图实现
大家好,我是java1234_小锋老师,最近写了一套【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)视频教程,持续更新中,计划月底更新完,感谢支持。今天讲解主页-评论用户时间占比环形饼状图实现视频在线地址:2026版【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts+爬虫)视频教程(火爆连载更新中.
- Pandas 处理缺失数据
文章目录Pandas处理缺失数据缺失数据约定的权衡Pandas中的缺失数据None作为哨兵值NaN:缺失的数值数据Pandas中的NaN和NonePandas可空数据类型对缺失值的操作检测空值删除空值填充空值总结Pandas处理缺失数据许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的。尤其是,许多有趣的数据集都会存在一定程度的数据缺失。更复杂的是,不同的数据来源可能
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的