Knot Server XDP原理分析

目录

  • Knot Server XDP原理分析
    • 一、Kernel层代码分析
      • 1. kernel层源码的编译
      • 2. bpf-kenerl.c源码的分析
    • 二、 User层代码分析

Knot Server XDP原理分析

xdp部分的代码分为Kernel层和User层两部分,Kernel层代码由User层代码调用linux bpf接口加载到网卡内核驱动,对进入的数据包进行拦截,对于Knot关注的DNS数据包(包括UDP/TCP,甚至QUIC)以Zero Copy的方式穿透到User层的代码进行处理,而Knot不关注的网络数据包则直接PASS到内核网络协议栈进行常规处理。

一、Kernel层代码分析

1. kernel层源码的编译

Kernel层代码存放在src/libknot/xdp目录下面,包括以下几个文件:

  • bpf-consts.h
  • bpf-kernel.c

以上kernel层的代码需要用clang 编译成ebpf字节码并加载到ebpf内核虚拟机中运行。使用以下命令生成:

clang -target bpf -Wall -O2 -g -DNDEBUG -c -o bpf-kernel.o -I/usr/include/x86_64-linux-gnu -include ../../config.h bpf-kernel.c

llvm-strip -S bpf-kernel.o

clang 设置了“-target bpf ”选项,用以生成ebpf字节码。

llvm-strip 命令用来删除符号表和相关调试信息。

为了方便User层代码将生成的ebpf字节码加载到ebpf内核虚拟机中,将以上命令生成的bpf-kernel.o的原始字节码,生成为一个c语言数组,以便直接链接编译到User层代码中,这样无需在启动User层代码的时候再额外提供bpf-kernel.o文件,便于安装部署。命令如下:

xxd -i bpf-kernel.o > bpf-kernel-obj.c

输出为bpf-kernel-obj.c文件,另外需要编写一个bpf-kenrle-obj.h的文件,便于User层代码进行include。如下:

extern unsigned char bpf_kernel_o[];
extern unsigned int bpf_kernel_o_len;

2. bpf-kenerl.c源码的分析

2.1 首先定义了两个ebpf的map,如下:

/* A map of configuration options. */
struct {
	__uint(type, BPF_MAP_TYPE_ARRAY);
	__uint(max_entries, QUEUE_MAX);
	__uint(key_size, sizeof(__u32)); /* Must be 4 bytes. */
	__uint(value_size, sizeof(knot_xdp_opts_t));
} opts_map SEC(".maps");

/* A map of AF_XDP sockets. */
struct {
	__uint(type, BPF_MAP_TYPE_XSKMAP);
	__uint(max_entries, QUEUE_MAX);
	__uint(key_size, sizeof(__u32)); /* Must be 4 bytes. */
	__uint(value_size, sizeof(int));
} xsks_map SEC(".maps");

map是ebpf的一个非常重要的kernel和user层代码的通讯机制,user层代码可以将数据写入map,然后kernel层代码从map中读取,反之亦然。

第一个map为opts_map,其作用是user层借此将配置信息传递到kernel层代码,其key为网卡接收队列id,value为knot_xdp_opts_t,定义如下:

/*! \brief XDP map item for the filter configuration. */
typedef struct knot_xdp_opts knot_xdp_opts_t;
struct knot_xdp_opts {
	__u16 flags;     /*!< XDP filter flags \a knot_xdp_filter_flag_t. */
	__u16 udp_port;  /*!< UDP/TCP port to listen on. */
	__u16 quic_port; /*!< QUIC/UDP port to listen on. */
} __attribute__((packed));

第二个map为xsks_map,其作用是user层将其创建的AF_XDP的socket传递到kernel层代码,其key为网卡接收队列id, value为AF_XDP的socket句柄,kernel层代码在需要的时候将接收到的数据传递到该socket句柄对应的rx ring环形队列中,如:

/* Forward the packet to user space. */
bpf_redirect_map(&xsks_map, ctx->rx_queue_index, 0);

2.2 接着是主函数xdp_redirect_dns_func,下面进行逐行分析,以下是它的原型定义:

SEC("xdp")
int xdp_redirect_dns_func(struct xdp_md *ctx)

SEC(“xdp”)将xdp_redirect_dns_func的二进制字节码存放到elf的xdp节中,这个是 xdp程序的规定。

ctx是内核ebpf调用xdp_redirect_dns_func的时候传入的上下文参数,定义如下:

/* user accessible metadata for XDP packet hook
 * new fields must be added to the end of this structure
 */
struct xdp_md {
	__u32 data;          /* pkt data starting position */
	__u32 data_end;      /* end of pkt data  */
	__u32 data_meta;     /* meta data for the skb */
	/* Below access go through struct xdp_rxq_info */
	__u32 ingress_ifindex; /* rxq->dev->ifindex */
	__u32 rx_queue_index;  /* rxq->queue_index  */
	__u32 egress_ifindex;  /* txq->dev->ifindex */
};

2.2.1 获取配置选项并检查是否启用xdp

/* Get the queue options. */
__u32 index = ctx->rx_queue_index;
struct knot_xdp_opts *opts_ptr = bpf_map_lookup_elem(&opts_map, &index);
if (!opts_ptr) {
    return XDP_ABORTED;
}
/* save the opts_ptr value into opts */
knot_xdp_opts_t opts = *opts_ptr;

/* Check if the filter is disabled. */
if (!(opts.flags & KNOT_XDP_FILTER_ON)) {
	return XDP_PASS;
}

2.2.2 在skb同步预留vlan附加数据并初始化设置data和meta对应的指针地址

/* Try to reserve space in front of the packet for additional (VLAN) data. */
(void)bpf_xdp_adjust_meta(ctx, - (int)sizeof(struct knot_xdp_info) - KNOT_XDP_PKT_ALIGNMENT);

void *data = (void *)(long)ctx->data;
const void *data_end = (void *)(long)ctx->data_end;
struct knot_xdp_info *meta = (void *)(long)ctx->data_meta;

/* Check if the meta data pointer is usable (e.g. not `tap` interface). */
if ((void *)meta + sizeof(*meta) > data) {
	meta = 0;
}

9-11行代码的含义是:如果保留vlan附加数据空间操作失败,那么设置meta = 0,表示不能支持vlan报文的处理。

2.2.3 设置ethernet协议头的指针地址,并调整data指向三层头

struct ethhdr *eth_hdr = data;
const void *ip_hdr;
const struct iphdr *ip4;
const struct ipv6hdr *ip6;
const void *l4_hdr;
__u8 ipv4;
__u8 ip_proto;
__u8 fragmented = 0;
__u16 eth_type; /* In big endian. */

/* Parse Ethernet header. */
if ((void *)eth_hdr + sizeof(*eth_hdr) > data_end) {
    return XDP_DROP;
}
data += sizeof(*eth_hdr);

2.2.4 解析获取三层头

/* Parse possible VLAN (802.1Q) header. */
if (eth_hdr->h_proto == __constant_htons(ETH_P_8021Q)) {
    if (data + sizeof(__u16) + sizeof(eth_type) > data_end) {
        return XDP_DROP;
    } else if (meta == 0) { /* VLAN not supported. */
        return XDP_PASS;
    }
    __builtin_memcpy(&eth_type, data + sizeof(__u16), sizeof(eth_type));
    data += sizeof(__u16) + sizeof(eth_type);
} else {
    eth_type = eth_hdr->h_proto;
}

ip_hdr = data;

如果是VLAN报文,需要剥离VLAN报文头, 最后将ip_hdr指向三层头的开始位置。

2.2.5 解析三层报文,并得到四层头

/* Parse IPv4 or IPv6 header. */
switch (eth_type) {
    case __constant_htons(ETH_P_IP):
        ip4 = ip_hdr;
        if ((void *)ip4 + sizeof(*ip4) > data_end) {
            return XDP_DROP;
        }
        if (ip4->version != 4) {
            return XDP_DROP;
        }

        /* Check the IP length. Cannot use strict
         * equality due to Ethernet padding applied to
         * frames shorter than 64 octects. */
        if (data_end - data < __bpf_ntohs(ip4->tot_len)) 
        {
            return XDP_DROP;
        }
        /* check if the pkt is fragmented */
        if (ip4->frag_off != 0 &&
            ip4->frag_off != __constant_htons(IP_DF)) {
            fragmented = 1;
        }
        ip_proto = ip4->protocol;
        l4_hdr = data + ip4->ihl * 4;
        ipv4 = 1;
        break;
    case __constant_htons(ETH_P_IPV6):
        ip6 = ip_hdr;
        if ((void *)ip6 + sizeof(*ip6) > data_end) {
            return XDP_DROP;
        }
        if (ip6->version != 6) {
            return XDP_DROP;
        }

        /* Check the IP length. Cannot use strict
        * equality due to Ethernet padding applied 
        * to frames shorter than 64 octects. */
        if (data_end - data < __bpf_ntohs(ip6->payload_len) + sizeof(*ip6)) {
            return XDP_DROP;
        }

        ip_proto = ip6->nexthdr;
        data += sizeof(*ip6);
        if (ip_proto == IPPROTO_FRAGMENT) {
            fragmented = 1;
            const struct ipv6_frag_hdr *frag = data;
            if ((void *)frag + sizeof(*frag) > data_end)
            {
                return XDP_DROP;
            }
            ip_proto = frag->nexthdr;
            data += sizeof(*frag);
        }
        l4_hdr = data;
        ipv4 = 0;
        break;
    default:
        /* Pass packets of possible other protocols. */
        return XDP_PASS;
}

分别对ipv4和ipv6进行报文解析,如果报文有分片则设置分片标记(fragmented),最后将l4_hdr指向四层头地址。如果不是ipv4或者ipv6的报文,直接返回XDP_PASS交给内核进行处理。

2.2.6 解析四层头

const struct tcphdr *tcp;
const struct udphdr *udp;
__u16 port_dest;
__u8 match = 0;

/* Check the transport protocol. */
switch (ip_proto) {
    case IPPROTO_TCP:
        /* Parse TCP header. */
        tcp = l4_hdr;
        if (l4_hdr + sizeof(*tcp) > data_end) {
            return XDP_DROP;
        }

        port_dest = __bpf_ntohs(tcp->dest);

        if ((opts.flags & KNOT_XDP_FILTER_TCP) &&
            (port_dest == opts.udp_port ||
             ((opts.flags & (KNOT_XDP_FILTER_PASS | KNOT_XDP_FILTER_DROP)) &&
              port_dest >= opts.udp_port))) {
            match = 1;
        }
        break;
    case IPPROTO_UDP:
        /* Parse UDP header. */
        udp = l4_hdr;
        if (l4_hdr + sizeof(*udp) > data_end) {
            return XDP_DROP;
        }

        /* Check the UDP length. */
        if (data_end - (void *)udp < __bpf_ntohs(udp->len)) {
            return XDP_DROP;
        }

        port_dest = __bpf_ntohs(udp->dest);

        if ((opts.flags & KNOT_XDP_FILTER_UDP) &&
            (port_dest == opts.udp_port ||
             ((opts.flags & (KNOT_XDP_FILTER_PASS | KNOT_XDP_FILTER_DROP)) &&
              port_dest >= opts.udp_port))) {
            match = 1;
        } else if ((opts.flags & KNOT_XDP_FILTER_QUIC) &&
                   (port_dest == opts.quic_port ||
                    ((opts.flags & (KNOT_XDP_FILTER_PASS | KNOT_XDP_FILTER_DROP)) &&
                     port_dest >= opts.quic_port))) {
            match = 1;
        }
        break;
    default:
        /* Pass packets of possible other protocols. */
        return XDP_PASS;
}

对TCP/UDP协议分别进行解析,检查请求的目标端口是否是knot server监听的端口,如果是则设置match = 1标记。如果不是TCP/UDP协议,则直接返回XDP_PASS交给内核协议栈进行处理。

2.2.7 根据四层的端口匹配结果执行相应的处理

if (!match) {
    /* Pass non-matching packet. */
    return XDP_PASS;
} else if (opts.flags & KNOT_XDP_FILTER_DROP) {
    /* Drop matching packet if requested. */
    return XDP_DROP;
} else if (fragmented) {
    /* Drop fragmented packet. */
    return XDP_DROP;
}

  • 如果端口不是knot server监听的端口,则直接返回XDP_PASS交给内核协议栈进行处理。
  • 如果端口匹配了,并且设置了KNOT_XDP_FILTER_DROP选项,则返回XDP_DROP将报文丢弃。
  • 如果端口匹配了,并且请求报文被分片了,则返回XDP_DROP将报文丢弃。从这里可以看出knot server的xdp逻辑不能支持ip层的报文分片逻辑。

2.2.8 查找路由表进行路由处理

/* Take into account routing information. */
if (opts.flags & KNOT_XDP_FILTER_ROUTE) {
    struct bpf_fib_lookup fib = {
        .ifindex = 1 /* Loopback. */
    };
    if (ipv4) {
        fib.family   = AF_INET;
        fib.ipv4_src = ip4->daddr;
        fib.ipv4_dst = ip4->saddr;
    } else {
        struct in6_addr *ipv6_src = (struct in6_addr *)fib.ipv6_src;
        struct in6_addr *ipv6_dst = (struct in6_addr *)fib.ipv6_dst;
        fib.family = AF_INET6;
        *ipv6_src  = ip6->daddr;
        *ipv6_dst  = ip6->saddr;
    }

    const __u16 *mac_in = (const __u16 *)eth_hdr->h_dest;
    const __u16 *mac_out = (const __u16 *)fib.smac;
    int ret = bpf_fib_lookup(ctx, &fib, sizeof(fib), BPF_FIB_LOOKUP_DIRECT);
    switch (ret) {
        case BPF_FIB_LKUP_RET_SUCCESS:
            /* Cross-interface answers are handled 
             * through normal stack. */
            if (mac_in[0] != mac_out[0] ||
                mac_in[1] != mac_out[1] ||
                mac_in[2] != mac_out[2]) {
                return XDP_PASS;
            }

            /* Store output interface index for later use 
             * with VLAN in user space. */
            if (meta != 0) {
                meta->out_if_index = fib.ifindex;
            }

            /* Update destination MAC for responding. */
            __builtin_memcpy(eth_hdr->h_source, fib.dmac, ETH_ALEN);
            break;
        case BPF_FIB_LKUP_RET_FWD_DISABLED: 
            /* Disabled forwarding on loopback. */
            return XDP_ABORTED;
        case BPF_FIB_LKUP_RET_NO_NEIGH: 
            /* Use normal stack to obtain MAC. */
            return XDP_PASS;
        default:
            return XDP_DROP;
    }
}

  • 如果经过路由选择后的DNS相应包的发送接口与接收接口不同,则直接返回XDP_PASS交由内核协议栈处理。

  • 如果经过路由选择后发现目的地址被配置为黑洞,不可达,或者禁止状态,DNS请求报文则直接被丢弃。

  • 响应报文的目的mac地址和可能的vlan标记都从路由系统中获取。

2.2.9 将报文传递到user层代码进行处理

/* Forward the packet to user space. */
return bpf_redirect_map(&xsks_map, ctx->rx_queue_index, 0);

将接收到的报文传递到对应的AF_XDP socket的rx ring队列。

2.3 文件最后声明了版权信息

char _license[] SEC("license") = "GPL";

​ 由于linux内核ebpf虚拟机只能调用声明为GPL的代码,所以这里必须为GPL。

二、 User层代码分析

【待后续完善】

你可能感兴趣的:(高性能,knot,dns,xdp,源码分析)