GD32F470之can0收发+接收中断配置以及波特率计算(详细)

先申明,本栏目用的都是GD32F470芯片240M,软件用的是keil,编写用的是C++(其实和C没有区别).,
下面这个图是F450,F470比较新,还没出手册。

can的 相关知识我就不科普了。

IO口配置:

根据你自己板子上的IO口来配置,

我的can是PD0和PD1。

	/* enable can clock */
    rcu_periph_clock_enable(RCU_CAN0);
   // rcu_periph_clock_enable(RCU_CAN1);
    rcu_periph_clock_enable(RCU_GPIOD);
    
    /* configure CAN0 GPIO */
    gpio_output_options_set(GPIOD, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_0);
    gpio_mode_set(GPIOD, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_0);
    gpio_af_set(GPIOD, GPIO_AF_9, GPIO_PIN_0);
    
    gpio_output_options_set(GPIOD, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_1);
    gpio_mode_set(GPIOD, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_1);
    gpio_af_set(GPIOD, GPIO_AF_9, GPIO_PIN_1);

CAN波特率计算.

GD32F470之can0收发+接收中断配置以及波特率计算(详细)_第1张图片
举个例子:我要配置成500K.

那么我的tpclk1 =60M.
从这个图可以看出,但是我的是F470,是60M。
GD32F470之can0收发+接收中断配置以及波特率计算(详细)_第2张图片

那么:
1.tq = (1/60M )* 12=(1/5)us ,或者这么理解 1/(60M/12),那么12就是分频的意思。

2._ 为 1 tq(一般固定为1)
1 + 2凑出一个9 * tq就行.
我这里1 = 5 ,2=4.
所以:(1+ 5 + 4 )
tq = 10 * (1/5)us = 2us

  1. e = 1 / 2us = 0.5 *10 ^6 hz = 500 000hz = 500K.

Can配置:

代码:
下面列举了各种波特率的配置.

/Can时钟是60M 
//波特率 = (60M /(1 + ntsg1 + ntsg2) / presc) ,单位是M
void Can_Class::Can_Init(u8 baudrate_Index)
{
		can_parameter_struct            can_parameter;
		can_filter_parameter_struct     can_filter;
	
		uint8_t ntsg1=0,ntsg2=0;
		uint16_t presc=0;
		
		Can_GPIO_Init();

		if(baudrate_Index==1)
			can_Baudrate =20000;
		else if(baudrate_Index==2)
			can_Baudrate =50000;
		else if(baudrate_Index==3)
			can_Baudrate =100000;
		else if(baudrate_Index==4)
			can_Baudrate =125000;
		else if(baudrate_Index==5)
			can_Baudrate =250000;
		else if(baudrate_Index==6)
			can_Baudrate =500000;
		else if(baudrate_Index==7)
			can_Baudrate =1000000;
		else
			can_Baudrate =500000;
		 
		 
	  //根据波特率的不同,设置不同参数

			if(can_Baudrate==20000)
			{
					presc=300;
					ntsg1=CAN_BT_BS1_5TQ;
					ntsg2=CAN_BT_BS2_4TQ;
			}
			else if(can_Baudrate==50000)
			{
					presc=120;
					ntsg1=CAN_BT_BS1_5TQ;
					ntsg2=CAN_BT_BS2_4TQ;
			}

				else if(can_Baudrate==100000)
			{
					presc=60;
					ntsg1=CAN_BT_BS1_5TQ;
					ntsg2=CAN_BT_BS2_4TQ;
			}
				else if(can_Baudrate==125000)
			{
					presc=48;
					ntsg1=CAN_BT_BS1_5TQ;
					ntsg2=CAN_BT_BS2_4TQ;
			}

				else if(can_Baudrate==250000)
			{
					presc=24;
					ntsg1=CAN_BT_BS1_5TQ;
					ntsg2=CAN_BT_BS2_4TQ;
			}

				else if(can_Baudrate==500000)
			{
					presc=12;
					ntsg1=CAN_BT_BS1_5TQ;
					ntsg2=CAN_BT_BS2_4TQ;
			}

					else if(can_Baudrate==1000000)
			{
					presc=6;
					ntsg1=CAN_BT_BS1_5TQ;
					ntsg2=CAN_BT_BS2_4TQ;
			}
			else//默认500K
			{
					presc=12;
					ntsg1=CAN_BT_BS1_5TQ;
					ntsg2=CAN_BT_BS2_4TQ;
			}
			
	
		    /* initialize CAN register */
    can_deinit(can_index);
  
    /* initialize CAN */
    can_parameter.time_triggered = DISABLE;
    can_parameter.auto_bus_off_recovery = ENABLE; //使能重新上线自动连接的功能
    can_parameter.auto_wake_up = DISABLE;
    can_parameter.auto_retrans = DISABLE;
    can_parameter.rec_fifo_overwrite = DISABLE;//禁用接收 FIFO 满时覆盖0:使能接收 FIFO 满时覆盖
    can_parameter.trans_fifo_order = DISABLE;
    can_parameter.working_mode = CAN_NORMAL_MODE;
    can_parameter.resync_jump_width = CAN_BT_SJW_1TQ;
    can_parameter.time_segment_1 = ntsg1;
    can_parameter.time_segment_2 =	ntsg2;
  
    can_parameter.prescaler = presc;
    can_init(can_index, &can_parameter);
		
			
			
		can_filter.filter_number = 0;


    /* initialize filter */    
    can_filter.filter_mode = CAN_FILTERMODE_MASK;
    can_filter.filter_bits = CAN_FILTERBITS_32BIT;
    can_filter.filter_list_high = 0x0000;
    can_filter.filter_list_low = 0x0000;
    can_filter.filter_mask_high = 0x0000;
    can_filter.filter_mask_low = 0x0000;  
		
		
		can_filter.filter_fifo_number = CAN_FIFO0;
		
		
    can_filter.filter_enable = ENABLE;
		
    can_filter_init(&can_filter);
		
		 /* enable CAN receive FIFO0 not empty interrupt */
    can_interrupt_enable(can_index, CAN_INTEN_RFNEIE0);
		
		
		nvic_irq_enable(CAN0_RX0_IRQn,0,1);
		
}

can 寄存器以及库函数的配置细节和坑:

可以看到寄存器的位域值是+1的。
所以如果是自己填写bs1和bs2数据时而不用自带库的宏定义的话,要减少1.
注意:
分频系数不需要手动减1,因为库函数里面帮我们减1了。。(波特率 的公式要加1的都要),

GD32F470之can0收发+接收中断配置以及波特率计算(详细)_第3张图片

库的宏定义代码:
可以看到减了1

#define CAN_BT_BS1_4TQ                     ((uint8_t)0x03U)             /*!< 4 time quanta */
#define CAN_BT_BS1_5TQ                     ((uint8_t)0x04U)             /*!< 5 time quanta */

然后是分频系数:在init函数里面-1,不需要手动减1.
GD32F470之can0收发+接收中断配置以及波特率计算(详细)_第4张图片
总结:还是用库的宏定义把。

滤波ID:

没弄,默认全部接受。后续可能会搞。

发送函数:

发送的 是数据帧和标准帧

	uint8_t Can_Class::Can_Send_Data(uint32_t ID,uint8_t* msg,uint32_t len)
{
		uint8_t mail_Index=0;
		uint8_t i=0;	
		UNS32 Canopen_Wait_Send_Succeed_time=0;
	can_trasnmit_message_struct transmit_message;
	
	transmit_message.tx_sfid = ID;
	transmit_message.tx_efid = 0x00;
	transmit_message.tx_ft = CAN_FT_DATA; 		//数据帧
	transmit_message.tx_ff = CAN_FF_STANDARD;	//标准帧
	transmit_message.tx_dlen = len;
	for(i=0;i<len; i++)
	{
		transmit_message.tx_data[i] = msg[i];
	}
	
	mail_Index = can_message_transmit(can_index, &transmit_message);

	
	mail_Index = can_message_transmit(CAN0, &transmit_message);
		
		Canopen_Wait_Send_Succeed_time = lwTickCount;
		
		while(can_transmit_states(CAN0,mail_Index)!=CAN_TRANSMIT_OK)
		{
				if(lwTickCount>(Canopen_Wait_Send_Succeed_time + 2))
				{
					
						return 1;
						
				}

				
		}
			return 0;
}


}

can_message_transmit是判断有没有空邮箱,有的话就发送出去。
can_transmit_states是判断该邮箱的状态。
GD32F470之can0收发+接收中断配置以及波特率计算(详细)_第5张图片

中断函数:

我的是接收邮箱为不空就中断,然后有数据就读取出来。
处理的是canfasival的代码

注意
不需要清中断,读取了就会硬件清零。

extern "C"void CAN0_RX0_IRQHandler(void)
{
		
		Message RxMSG = Message_Initializer;
	//这只是判断是否打开了中断,不用can_interrupt_flag_clear,
	//can_interrupt_flag_clear这个函数是用来清状态寄存器 (CAN_STAT)的,不是接收中断的.

		can_receive_message_struct receive_message;
	  /* check the receive message */
		//释放一次 FIFO0 中的数据
		//RFD0该位被置 1, 将释放 FIFO0 中的一帧数据。
		//FIFO 释放相应的数据空间后,该位被清 0。硬件清零
    can_message_receive(CAN0, CAN_FIFO0, &receive_message);
		
		/************Canfestival需要的********************************************/
		RxMSG.cob_id = receive_message.rx_sfid;
		RxMSG.len		=  receive_message.rx_dlen;
		if( receive_message.rx_ft == CAN_FT_REMOTE )
		{
					RxMSG.rtr = 1;    
		}
		else
		{
					RxMSG.rtr = 0; 
		} 
		mymemcpy(RxMSG.data, receive_message.rx_data, RxMSG.len);
		
		
		canDispatch(&TestSlave_Data, &(RxMSG));  //canopen报文分析
		

}

库函数的最后会释放。

void can_message_receive(uint32_t can_periph, uint8_t fifo_number, can_receive_message_struct *receive_message)
{
    /* get the frame format */
    receive_message->rx_ff = (uint8_t)(CAN_RFIFOMI_FF & CAN_RFIFOMI(can_periph, fifo_number));
    if(CAN_FF_STANDARD == receive_message->rx_ff) {
        /* get standard identifier */
        receive_message->rx_sfid = (uint32_t)(GET_RFIFOMI_SFID(CAN_RFIFOMI(can_periph, fifo_number)));
    } else {
        /* get extended identifier */
        receive_message->rx_efid = (uint32_t)(GET_RFIFOMI_EFID(CAN_RFIFOMI(can_periph, fifo_number)));
    }

    /* get frame type */
    receive_message->rx_ft = (uint8_t)(CAN_RFIFOMI_FT & CAN_RFIFOMI(can_periph, fifo_number));
    /* filtering index */
    receive_message->rx_fi = (uint8_t)(GET_RFIFOMP_FI(CAN_RFIFOMP(can_periph, fifo_number)));
    /* get receive data length */
    receive_message->rx_dlen = (uint8_t)(GET_RFIFOMP_DLENC(CAN_RFIFOMP(can_periph, fifo_number)));

    /* receive data */
    receive_message -> rx_data[0] = (uint8_t)(GET_RFIFOMDATA0_DB0(CAN_RFIFOMDATA0(can_periph, fifo_number)));
    receive_message -> rx_data[1] = (uint8_t)(GET_RFIFOMDATA0_DB1(CAN_RFIFOMDATA0(can_periph, fifo_number)));
    receive_message -> rx_data[2] = (uint8_t)(GET_RFIFOMDATA0_DB2(CAN_RFIFOMDATA0(can_periph, fifo_number)));
    receive_message -> rx_data[3] = (uint8_t)(GET_RFIFOMDATA0_DB3(CAN_RFIFOMDATA0(can_periph, fifo_number)));
    receive_message -> rx_data[4] = (uint8_t)(GET_RFIFOMDATA1_DB4(CAN_RFIFOMDATA1(can_periph, fifo_number)));
    receive_message -> rx_data[5] = (uint8_t)(GET_RFIFOMDATA1_DB5(CAN_RFIFOMDATA1(can_periph, fifo_number)));
    receive_message -> rx_data[6] = (uint8_t)(GET_RFIFOMDATA1_DB6(CAN_RFIFOMDATA1(can_periph, fifo_number)));
    receive_message -> rx_data[7] = (uint8_t)(GET_RFIFOMDATA1_DB7(CAN_RFIFOMDATA1(can_periph, fifo_number)));

    /* release FIFO */
    if(CAN_FIFO0 == fifo_number) {
        CAN_RFIFO0(can_periph) |= CAN_RFIFO0_RFD0;
    } else {
        CAN_RFIFO1(can_periph) |= CAN_RFIFO1_RFD1;
    }
}

GD32F470之can0收发+接收中断配置以及波特率计算(详细)_第6张图片

你可能感兴趣的:(GD32F470,单片机,stm32,arm)