【STM32】STM32学习笔记-硬件SPI读写W25Q64(40)

00. 目录

文章目录

    • 00. 目录
    • 01. SPI简介
    • 02. W25Q64简介
    • 03. SPI相关API
      • 3.1 SPI_Init
      • 3.2 SPI_Cmd
      • 3.3 SPI_I2S_SendData
      • 3.4 SPI_I2S_ReceiveData
      • 3.5 SPI_I2S_GetFlagStatus
      • 3.6 SPI_I2S_ClearFlag
      • 3.7 SPI_InitTypeDef
    • 04. 硬件SPI读写W25Q64接线图
    • 05. 硬件SPI读写W25Q64示例
    • 06. 程序下载
    • 07. 附录

01. SPI简介

在大容量产品和互联型产品上,SPI接口可以配置为支持SPI协议或者支持I2S音频协议。SPI接口默认工作在SPI方式,可以通过软件把功能从SPI模式切换到I2S模式。

在小容量和中容量产品上,不支持I2S音频协议。

串行外设接口(SPI)允许芯片与外部设备以半/全双工、同步、串行方式通信。此接口可以被配置成主模式,并为外部从设备提供通信时钟(SCK)。接口还能以多主配置方式工作。

它可用于多种用途,包括使用一条双向数据线的双线单工同步传输,还可使用CRC校验的可靠通信。

I2S也是一种3引脚的同步串行接口通讯协议。它支持四种音频标准,包括飞利浦I2S标准,MSB和LSB对齐标准,以及PCM标准。它在半双工通讯中,可以工作在主和从2种模式下。当它作为主设备时,通过接口向外部的从设备提供时钟信号。

02. W25Q64简介

•W25Qxx系列是一种低成本、小型化、使用简单的非易失性存储器,常应用于数据存储、字库存储、固件程序存储等场景

•存储介质:Nor Flash(闪存)

•时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI)

•存储容量(24位地址)

03. SPI相关API

3.1 SPI_Init

/**
  * @brief  Initializes the SPIx peripheral according to the specified 
  *         parameters in the SPI_InitStruct.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param  SPI_InitStruct: pointer to a SPI_InitTypeDef structure that
  *         contains the configuration information for the specified SPI peripheral.
  * @retval None
  */
void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct)
功能:
	根据 SPI_InitStruct 中指定的参数初始化外设 SPIx 寄存器
参数:
   SPIx:x 可以是 1 或者 2,来选择 SPI 外设
   SPI_InitStruct:指向结构 SPI_InitTypeDef 的指针,包含了外设 SPI 的配置信息
返回值:

3.2 SPI_Cmd

/**
  * @brief  Enables or disables the specified SPI peripheral.
  * @param  SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
  * @param  NewState: new state of the SPIx peripheral. 
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void SPI_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState)
功能:
	使能或者失能SPI外设
参数:
   SPIx:x 可以是 1 或者 2,来选择 SPI 外设
   NewState: 外设 SPIx 的新状态这个参数可以取:ENABLE 或者 DISABLE
返回值:

3.3 SPI_I2S_SendData

/**
  * @brief  Transmits a Data through the SPIx/I2Sx peripheral.
  * @param  SPIx: where x can be
  *   - 1, 2 or 3 in SPI mode 
  *   - 2 or 3 in I2S mode
  * @param  Data : Data to be transmitted.
  * @retval None
  */
void SPI_I2S_SendData(SPI_TypeDef* SPIx, uint16_t Data)
功能:
	通过外设 SPIx 发送一个数据
参数:
   SPIx:x 可以是 1 或者 2,来选择 SPI 外设
   Data: 待发送的数据
返回值:

3.4 SPI_I2S_ReceiveData

/**
  * @brief  Returns the most recent received data by the SPIx/I2Sx peripheral. 
  * @param  SPIx: where x can be
  *   - 1, 2 or 3 in SPI mode 
  *   - 2 or 3 in I2S mode
  * @retval The value of the received data.
  */
uint16_t SPI_I2S_ReceiveData(SPI_TypeDef* SPIx)
功能:
	返回通过 SPIx 最近接收的数据
参数:
   SPIx:x 可以是 1 或者 2,来选择 SPI 外设
返回值:
	接收到的字       
            
    
    

3.5 SPI_I2S_GetFlagStatus

/**
  * @brief  Checks whether the specified SPI/I2S flag is set or not.
  * @param  SPIx: where x can be
  *   - 1, 2 or 3 in SPI mode 
  *   - 2 or 3 in I2S mode
  * @param  SPI_I2S_FLAG: specifies the SPI/I2S flag to check. 
  *   This parameter can be one of the following values:
  *     @arg SPI_I2S_FLAG_TXE: Transmit buffer empty flag.
  *     @arg SPI_I2S_FLAG_RXNE: Receive buffer not empty flag.
  *     @arg SPI_I2S_FLAG_BSY: Busy flag.
  *     @arg SPI_I2S_FLAG_OVR: Overrun flag.
  *     @arg SPI_FLAG_MODF: Mode Fault flag.
  *     @arg SPI_FLAG_CRCERR: CRC Error flag.
  *     @arg I2S_FLAG_UDR: Underrun Error flag.
  *     @arg I2S_FLAG_CHSIDE: Channel Side flag.
  * @retval The new state of SPI_I2S_FLAG (SET or RESET).
  */
FlagStatus SPI_I2S_GetFlagStatus(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG)
功能:
	检查指定的 SPI 标志位设置与否
参数:
   SPIx:x 可以是 1 或者 2,来选择 SPI 外设
   SPI_I2S_FLAG:待检查的 SPI 标志位
返回值:
	SPI_FLAG 的新状态(SET 或者 RESET)  
    

3.6 SPI_I2S_ClearFlag

/**
  * @brief  Clears the SPIx CRC Error (CRCERR) flag.
  * @param  SPIx: where x can be
  *   - 1, 2 or 3 in SPI mode 
  * @param  SPI_I2S_FLAG: specifies the SPI flag to clear. 
  *   This function clears only CRCERR flag.
  * @note
  *   - OVR (OverRun error) flag is cleared by software sequence: a read 
  *     operation to SPI_DR register (SPI_I2S_ReceiveData()) followed by a read 
  *     operation to SPI_SR register (SPI_I2S_GetFlagStatus()).
  *   - UDR (UnderRun error) flag is cleared by a read operation to 
  *     SPI_SR register (SPI_I2S_GetFlagStatus()).
  *   - MODF (Mode Fault) flag is cleared by software sequence: a read/write 
  *     operation to SPI_SR register (SPI_I2S_GetFlagStatus()) followed by a 
  *     write operation to SPI_CR1 register (SPI_Cmd() to enable the SPI).
  * @retval None
  */
void SPI_I2S_ClearFlag(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG)
功能:
	清除 SPIx 的待处理标志位
参数:
   SPIx:x 可以是 1 或者 2,来选择 SPI 外设
   SPI_I2S_FLAG:待清除的 SPI 标志位
返回值:

3.7 SPI_InitTypeDef

typedef struct
{
  uint16_t SPI_Direction;           /*!< Specifies the SPI unidirectional or bidirectional data mode.
                                         This parameter can be a value of @ref SPI_data_direction */
  uint16_t SPI_Mode;                /*!< Specifies the SPI operating mode.
                                         This parameter can be a value of @ref SPI_mode */
  uint16_t SPI_DataSize;            /*!< Specifies the SPI data size.
                                         This parameter can be a value of @ref SPI_data_size */
  uint16_t SPI_CPOL;                /*!< Specifies the serial clock steady state.
                                         This parameter can be a value of @ref SPI_Clock_Polarity */
  uint16_t SPI_CPHA;                /*!< Specifies the clock active edge for the bit capture.
                                         This parameter can be a value of @ref SPI_Clock_Phase */
  uint16_t SPI_NSS;                 /*!< Specifies whether the NSS signal is managed by
                                         hardware (NSS pin) or by software using the SSI bit.
                                         This parameter can be a value of @ref SPI_Slave_Select_management */
  uint16_t SPI_BaudRatePrescaler;   /*!< Specifies the Baud Rate prescaler value which will be
                                         used to configure the transmit and receive SCK clock.
                                         This parameter can be a value of @ref SPI_BaudRate_Prescaler.
                                         @note The communication clock is derived from the master
                                               clock. The slave clock does not need to be set. */
  uint16_t SPI_FirstBit;            /*!< Specifies whether data transfers start from MSB or LSB bit.
                                         This parameter can be a value of @ref SPI_MSB_LSB_transmission */
  uint16_t SPI_CRCPolynomial;       /*!< Specifies the polynomial used for the CRC calculation. */
}SPI_InitTypeDef;

SPI_Direction

/** @defgroup SPI_data_direction 
  * @{
  */
  
#define SPI_Direction_2Lines_FullDuplex ((uint16_t)0x0000)
#define SPI_Direction_2Lines_RxOnly     ((uint16_t)0x0400)
#define SPI_Direction_1Line_Rx          ((uint16_t)0x8000)
#define SPI_Direction_1Line_Tx          ((uint16_t)0xC000)

SPI_Mode

/** @defgroup SPI_mode 
  * @{
  */

#define SPI_Mode_Master                 ((uint16_t)0x0104)
#define SPI_Mode_Slave                  ((uint16_t)0x0000)
#define IS_SPI_MODE(MODE) (((MODE) == SPI_Mode_Master) || \
                           ((MODE) == SPI_Mode_Slave))

SPI_DataSize

/** @defgroup SPI_data_size 
  * @{
  */

#define SPI_DataSize_16b                ((uint16_t)0x0800)
#define SPI_DataSize_8b                 ((uint16_t)0x0000)

SPI_CPOL


/** @defgroup SPI_Clock_Polarity 
  * @{
  */

#define SPI_CPOL_Low                    ((uint16_t)0x0000)
#define SPI_CPOL_High                   ((uint16_t)0x0002)

SPI_CPHA

/** @defgroup SPI_Clock_Phase 
  * @{
  */

#define SPI_CPHA_1Edge                  ((uint16_t)0x0000)
#define SPI_CPHA_2Edge                  ((uint16_t)0x0001)

SPI_NSS

/** @defgroup SPI_Slave_Select_management 
  * @{
  */

#define SPI_NSS_Soft                    ((uint16_t)0x0200)
#define SPI_NSS_Hard                    ((uint16_t)0x0000)

SPI_BaudRatePrescaler

/** @defgroup SPI_BaudRate_Prescaler 
  * @{
  */

#define SPI_BaudRatePrescaler_2         ((uint16_t)0x0000)
#define SPI_BaudRatePrescaler_4         ((uint16_t)0x0008)
#define SPI_BaudRatePrescaler_8         ((uint16_t)0x0010)
#define SPI_BaudRatePrescaler_16        ((uint16_t)0x0018)
#define SPI_BaudRatePrescaler_32        ((uint16_t)0x0020)
#define SPI_BaudRatePrescaler_64        ((uint16_t)0x0028)
#define SPI_BaudRatePrescaler_128       ((uint16_t)0x0030)
#define SPI_BaudRatePrescaler_256       ((uint16_t)0x0038)

SPI_FirstBit

/** @defgroup SPI_MSB_LSB_transmission 
  * @{
  */

#define SPI_FirstBit_MSB                ((uint16_t)0x0000)
#define SPI_FirstBit_LSB                ((uint16_t)0x0080)

SPI_CRCPolynomial

CRC校验值

04. 硬件SPI读写W25Q64接线图

【STM32】STM32学习笔记-硬件SPI读写W25Q64(40)_第1张图片

05. 硬件SPI读写W25Q64示例

spi.h

#ifndef __SPI_H__
#define __SPI_H__

#include "stm32f10x.h"  

void spi_init(void);

void spi_start(void);

void spi_stop(void);

uint8_t spi_swap_byte(uint8_t val);



#endif /*__SPI_H__*/


spi.c

#include "spi.h"
#include "stm32f10x_spi.h"

/*
CS: PA4
CLK: PA5
DO: PA6
DI: PA7
*/

//SS写  PA4
void spi_W_SS(uint8_t bitval)
{
	GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)bitval);
}


void spi_init(void)
{
	GPIO_InitTypeDef GPIO_InitStruct;
	SPI_InitTypeDef SPI_InitStruct;
	
	//使能时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);	
	
	//A4  CS
	GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;
	GPIO_InitStruct.GPIO_Pin = GPIO_Pin_4;
	GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStruct);
	
	//A5 A7  CLK  DI
	GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStruct.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_7;
	GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStruct);
	
	//A6  DO
	GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6;
	GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStruct);


	SPI_InitStruct.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_128;
	SPI_InitStruct.SPI_CPHA = SPI_CPHA_1Edge;
	SPI_InitStruct.SPI_CPOL = SPI_CPOL_Low;
	SPI_InitStruct.SPI_CRCPolynomial = 7;
	SPI_InitStruct.SPI_DataSize = SPI_DataSize_8b;
	SPI_InitStruct.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
	SPI_InitStruct.SPI_FirstBit = SPI_FirstBit_MSB;
	SPI_InitStruct.SPI_Mode = SPI_Mode_Master;
	SPI_InitStruct.SPI_NSS = SPI_NSS_Soft;
	SPI_Init(SPI1, &SPI_InitStruct);
	
	SPI_Cmd(SPI1, ENABLE);
	
	spi_W_SS(1);
}

void spi_start(void)
{
	spi_W_SS(0);
}

void spi_stop(void)
{
	spi_W_SS(1);
}

uint8_t spi_swap_byte(uint8_t val)
{
	while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) != SET);

	SPI_I2S_SendData(SPI1, val);
	
	while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) != SET);
	
	return SPI_I2S_ReceiveData(SPI1);
}

w25q64.h

#ifndef __W25Q64_H__

#define __W25Q64_H__

#include "stm32f10x.h"  


#define W25Q64_WRITE_ENABLE							0x06
#define W25Q64_WRITE_DISABLE						0x04
#define W25Q64_READ_STATUS_REGISTER_1				0x05
#define W25Q64_READ_STATUS_REGISTER_2				0x35
#define W25Q64_WRITE_STATUS_REGISTER				0x01
#define W25Q64_PAGE_PROGRAM							0x02
#define W25Q64_QUAD_PAGE_PROGRAM					0x32
#define W25Q64_BLOCK_ERASE_64KB						0xD8
#define W25Q64_BLOCK_ERASE_32KB						0x52
#define W25Q64_SECTOR_ERASE_4KB						0x20
#define W25Q64_CHIP_ERASE							0xC7
#define W25Q64_ERASE_SUSPEND						0x75
#define W25Q64_ERASE_RESUME							0x7A
#define W25Q64_POWER_DOWN							0xB9
#define W25Q64_HIGH_PERFORMANCE_MODE				0xA3
#define W25Q64_CONTINUOUS_READ_MODE_RESET			0xFF
#define W25Q64_RELEASE_POWER_DOWN_HPM_DEVICE_ID		0xAB
#define W25Q64_MANUFACTURER_DEVICE_ID				0x90
#define W25Q64_READ_UNIQUE_ID						0x4B
#define W25Q64_JEDEC_ID								0x9F
#define W25Q64_READ_DATA							0x03
#define W25Q64_FAST_READ							0x0B
#define W25Q64_FAST_READ_DUAL_OUTPUT				0x3B
#define W25Q64_FAST_READ_DUAL_IO					0xBB
#define W25Q64_FAST_READ_QUAD_OUTPUT				0x6B
#define W25Q64_FAST_READ_QUAD_IO					0xEB
#define W25Q64_OCTAL_WORD_READ_QUAD_IO				0xE3

#define W25Q64_DUMMY_BYTE							0xFF



void W25Q64_init(void);

void W25Q64_read_id(uint8_t *mid, uint16_t *did);

//写使能
void W25Q64_write_enable(void);

//等待 直到空闲
void W25Q64_wait_busy(void);

void W25Q64_sector_erase(uint32_t addr);

void W25Q64_page_program(uint32_t addr, uint8_t *arr, uint16_t len);

void W25Q64_read_data(uint32_t addr, uint8_t *arr, uint16_t len);


#endif /*__W25Q64_H__*/

w25q64.c

#include "w25q64.h"
#include "spi.h"

void W25Q64_init(void)
{
	spi_init();
}

void W25Q64_read_id(uint8_t *mid, uint16_t *did)
{
	spi_start();
	spi_swap_byte(W25Q64_JEDEC_ID);
	
	*mid = spi_swap_byte(W25Q64_DUMMY_BYTE);
	*did = spi_swap_byte(W25Q64_DUMMY_BYTE);
	*did <<= 8;
	*did |= spi_swap_byte(W25Q64_DUMMY_BYTE);
	
	spi_stop();
}


void W25Q64_write_enable(void)
{
	spi_start();

	spi_swap_byte(W25Q64_WRITE_ENABLE);
	
	spi_stop();
}


void W25Q64_wait_busy(void)
{
	uint32_t timeout;
	spi_start();
	
	spi_swap_byte(W25Q64_READ_STATUS_REGISTER_1);	
	
	timeout = 100000;
	while((spi_swap_byte(W25Q64_DUMMY_BYTE) & 0x1) == 0x01)
	{
		timeout--;
		if (0 == timeout)
		{
			break;
		}
	}
	
	spi_stop();
}


void W25Q64_page_program(uint32_t addr, uint8_t *arr, uint16_t len)
{
	uint8_t i;
	
	W25Q64_write_enable();
	
	spi_start();
	
	spi_swap_byte(W25Q64_PAGE_PROGRAM);	
	
	spi_swap_byte(addr >> 16);
	spi_swap_byte(addr >> 8);
	spi_swap_byte(addr);	

	for (i = 0; i < len; i++)
	{
		spi_swap_byte(arr[i]);
	}
	
	spi_stop();
	
	W25Q64_wait_busy();
}


void W25Q64_sector_erase(uint32_t addr)
{
	W25Q64_write_enable();
	
	spi_start();
	
	spi_swap_byte(W25Q64_SECTOR_ERASE_4KB);	
	
	spi_swap_byte(addr >> 16);
	spi_swap_byte(addr >> 8);
	spi_swap_byte(addr);

	spi_stop();
	
	W25Q64_wait_busy();
	
}

void W25Q64_read_data(uint32_t addr, uint8_t *arr, uint16_t len)
{
	uint8_t i = 0;
	
	spi_start();
	
	spi_swap_byte(W25Q64_READ_DATA);	
	
	spi_swap_byte(addr >> 16);
	spi_swap_byte(addr >> 8);
	spi_swap_byte(addr);
	
	for (i = 0; i < len; i++)
	{
		arr[i] = spi_swap_byte(W25Q64_DUMMY_BYTE);
	}

	spi_stop();
}


main.c

#include "stm32f10x.h"

#include "delay.h"
#include "oled.h"
#include "w25q64.h"


 int main(void)
 {	
	 uint8_t mid;
	 uint16_t did;
	 
	 uint8_t array_w[4] = {0x11, 0x22, 0x33, 0x44};
	 uint8_t array_r[4];

	 //初始化
	 OLED_Init();

	 W25Q64_init();

	 //显示一个字符
	 //OLED_ShowChar(1, 1, 'A');
	 //显示字符串
	 //OLED_ShowString(1, 3, "SPI Test");

	 OLED_ShowString(1, 1, "MID:   DID:");
	 OLED_ShowString(2, 1, "W:");
	 OLED_ShowString(3, 1, "R:");
	 
	 W25Q64_read_id(&mid, &did);
	 OLED_ShowHexNum(1, 5, mid, 2);
	 OLED_ShowHexNum(1, 12, did, 4);
	 
	 //擦除扇区
	 W25Q64_sector_erase(0x0);
	 
	 //写扇区
	 W25Q64_page_program(0x0, array_w, 4);
	 
	 //读数据
	 W25Q64_read_data(0x0, array_r, 4);
	 
	OLED_ShowHexNum(2, 3, array_w[0], 2);
	OLED_ShowHexNum(2, 6, array_w[1], 2);
	OLED_ShowHexNum(2, 9, array_w[2], 2);
	OLED_ShowHexNum(2, 12, array_w[3], 2);	 

	OLED_ShowHexNum(3, 3, array_r[0], 2);
	OLED_ShowHexNum(3, 6, array_r[1], 2);
	OLED_ShowHexNum(3, 9, array_r[2], 2);
	OLED_ShowHexNum(3, 12, array_r[3], 2);			 
		 
		 
	 while(1)
	 {
		 
	 }
	 
	 return 0;
 }


 

06. 程序下载

31-硬件SPI.rar

07. 附录

参考: 【STM32】江科大STM32学习笔记汇总

你可能感兴趣的:(STM32F103,stm32,学习,笔记,W25Q64,SPI,江科大,江科大stm32)