- 实时数据流计算引擎Flink和Spark剖析
程小舰
flinkspark数据库kafkahadoop
在过去几年,业界的主流流计算引擎大多采用SparkStreaming,随着近两年Flink的快速发展,Flink的使用也越来越广泛。与此同时,Spark针对SparkStreaming的不足,也继而推出了新的流计算组件。本文旨在深入分析不同的流计算引擎的内在机制和功能特点,为流处理场景的选型提供参考。(DLab数据实验室w.x.公众号出品)一.SparkStreamingSparkStreamin
- Deepseek技术深化:驱动大数据时代颠覆性变革的未来引擎
荣华富贵8
springboot搜索引擎后端缓存redis
在大数据时代,信息爆炸和数据驱动的决策逐渐重塑各行各业。作为一项前沿技术,Deepseek正在引领新一轮技术革新,颠覆传统数据处理与分析方式。本文将从理论原理、应用场景和前沿代码实践三个层面,深入剖析Deepseek技术如何为大数据时代提供颠覆性变革的解决方案。一、技术背景与核心思想1.1大数据挑战与机遇在数据量呈指数级增长的背景下,传统数据处理方法面临数据存储、计算效率和信息提取精度的诸多挑战。
- centos7安装配置 Anaconda3
Anaconda是一个用于科学计算的Python发行版,Anaconda于Python,相当于centos于linux。下载[root@testsrc]#mwgethttps://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.shBegintodownload:Anaconda3-5.2.0-L
- 大数据之路:阿里巴巴大数据实践——大数据领域建模综述
为什么需要数据建模核心痛点数据冗余:不同业务重复存储相同数据(如用户基础信息),导致存储成本激增。计算资源浪费:未经聚合的明细数据直接参与计算(如全表扫描),消耗大量CPU/内存资源。数据一致性缺失:同一指标在不同业务线的口径差异(如“活跃用户”定义不同),引发决策冲突。开发效率低下:每次分析需重新编写复杂逻辑,无法复用已有模型。数据建模核心价值性能提升:分层设计(ODS→DWD→DWS→ADS)
- Spark SQL架构及高级用法
Aurora_NeAr
sparksql架构
SparkSQL架构概述架构核心组件API层(用户接口)输入方式:SQL查询;DataFrame/DatasetAPI。统一性:所有接口最终转换为逻辑计划树(LogicalPlan),进入优化流程。编译器层(Catalyst优化器)核心引擎:基于规则的优化器(Rule-BasedOptimizer,RBO)与成本优化器(Cost-BasedOptimizer,CBO)。处理流程:阶段输入输出关键动
- 大数据技术笔记—spring入门
卿卿老祖
篇一spring介绍spring.io官网快速开始Aop面向切面编程,可以任何位置,并且可以细致到方法上连接框架与框架Spring就是IOCAOP思想有效的组织中间层对象一般都是切入service层spring组成前后端分离已学方式,前后台未分离:Spring的远程通信:明日更新创建第一个spring项目来源:科多大数据
- 大数据精准获客并实现高转化的核心思路和实现方法
2401_88470328
大数据精准获客数据分析数据挖掘大数据需求分析bigdata
大数据精准获客并实现高转化的核心思路和实现方法大数据精准获客并实现高转化的核心思路和实现方法在当今信息爆炸的时代,企业如何通过海量的数据精准获取潜在客户,并提高转化率,已经成为营销策略中的关键环节。大数据精准获客的核心思路在于数据驱动、多渠道触达以及优化转化路径,从而实现高效的市场推广和客户转化。数据驱动原理和机制数据驱动的核心在于通过分析用户行为数据,挖掘潜在客户的需求和喜好,从而制定更加精准的
- 一地鸡毛—一个中年男人的日常2021241
随止心语所自欲律
2021年8月31日,星期二,阴有小雨。早起5:30,跑步10公里。空气清新,烟雨朦胧,远山如黛,烟雾缭绕,宛若仙境。空气中湿气很大,朦胧细雨拍打在脸上,甚是舒服,跑步的人明显减少。早上开会,领导说起逐年大幅度下滑的工作业绩,越说越激动,说得脸红脖子粗。开完会又讨论了一下会议精神,心情也有波动,学习热情不高。心里还有一个大事,是今日大数据分析第1次考试,因自己前期没学,而且计算机编程方面没有任何基
- Ubuntu安装LAMP
L_h1
测试ubuntulinux
在安装vim时遇到了一个问题:E:无法获得锁/var/lib/dpkg/lock-frontend-open(11:资源暂时不可用)E:无法获取dpkg前端锁(/var/lib/dpkg/lock-frontend),是否有其他进程正占用它?解决办法:强制解锁sudorm/var/lib/dpkg/lock-frontendsudorm/var/cache/apt/archives/locksud
- Python 网络科学(三)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/3df7c5feb0bf40d7b9d88197a04b0b37译者:飞龙协议:CCBY-NC-SA4.0第八章:自我中心网络分析前一章内容非常丰富,我们学习了如何可视化和分析整个网络。相比之下,本章应该会感觉更简单,内容也会少得多。在之前的章节中,我们学习了如何获取和创建网络数据,如何从网络数据构建图形,如何清理图形数据,以及如何做一些有趣的事情
- 精通 Tableau 2023(四)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/dd6efaef313fee7252226d3af4a0b9fd译者:飞龙协议:CCBY-NC-SA4.0第十三章:提升性能一旦人们熟悉了Tableau的功能,他们很快就会遇到另一种类型的问题:性能。你们可能都曾经在屏幕上盯着加载数据或执行查询的字样发呆。但别担心,我们有办法!如果设计得当,Tableau仪表盘即使处理大量数据也能表现得非常好。本章
- Hive使用必知必会系列
王知无(import_bigdata)
Hive系统性学习专栏hivebigdatahdfs
一、Hive的几种数据模型内部表(Table将数据保存到Hive自己的数据仓库目录中:/usr/hive/warehouse)外部表(ExternalTable相对于内部表,数据不在自己的数据仓库中,只保存数据的元信息)分区表(PartitionTable将数据按照设定的条件分开存储,提高查询效率,分区----->目录)桶表(BucketTable本质上也是一种分区表,类似hash分区桶---->
- Consul 与 Hive:云原生数据仓库集成
AI云原生与云计算技术学院
AI云原生与云计算数据仓库consulhiveai
Consul与Hive:云原生数据仓库集成关键词:Consul、Hive、云原生、数据仓库集成、服务发现摘要:本文深入探讨了Consul与Hive在云原生环境下的数据仓库集成。首先介绍了集成的背景和相关概念,包括Consul的服务发现机制和Hive作为数据仓库的特点。接着详细阐述了核心概念及联系,通过文本示意图和Mermaid流程图展示其架构。对集成所涉及的核心算法原理进行了讲解,并给出Pytho
- Hive详解
一:Hive的历史价值1,Hive是Hadoop上的KillerApplication,Hive是Hadoop上的数据仓库,Hive同时兼具有数据仓库中的存储引擎和查询引擎的作用;而SparkSQL是一个更加出色和高级的查询引擎,所以在现在企业级应用中SparkSQL+Hive成为了业界使用大数据最为高效和流行的趋势。2,Hive是Facebook的推出,主要是为了让不动Java代码编程的人员也能
- 智慧施工:AI技术赋能建筑安全监测新纪元
开发AI智能应用,就下载InsCodeAIIDE,一键接入DeepSeek-R1满血版大模型!智慧施工:AI技术赋能建筑安全监测新纪元在现代建筑行业中,施工安全始终是核心关注点之一。随着科技的飞速发展,人工智能(AI)和大数据分析逐渐成为提升施工安全的重要工具。本文将探讨如何利用智能化软件和大模型API来构建高效的施工安全监测系统,并介绍一款强大的开发工具——InsCodeAIIDE的应用场景及其
- 智慧工地系统:建筑行业数字化变革的引领者
青云智慧园区
java
在建筑行业积极迈向数字化转型的浪潮中,智慧工地系统凭借“数据驱动、智能管控、协同增效”的核心优势,深度融合物联网、大数据、人工智能等前沿技术,构建起覆盖工程项目全生命周期的精细化管理体系。以下将从系统架构、核心功能模块、应用价值以及未来展望等方面,全方位剖析智慧工地系统如何实现施工全过程的智能化、高效化管理。一、系统架构:打造一体化协同管理平台智慧工地系统采用先进的分层架构设计,以底层的数据采集层
- Hive与Hudi集成:增量大数据处理方案
AI大数据智能洞察
大数据与AI人工智能大数据AI应用hivehadoop数据仓库ai
Hive与Hudi集成:增量大数据处理方案关键词:Hive、Hudi、增量大数据处理、数据集成、数据湖摘要:本文主要探讨了Hive与Hudi集成的增量大数据处理方案。我们将深入了解Hive和Hudi的核心概念,剖析它们之间的关系,详细阐述集成的算法原理与操作步骤,通过实际项目案例展示如何进行开发环境搭建、代码实现与解读。同时,会介绍该集成方案的实际应用场景、相关工具和资源,探讨未来发展趋势与挑战。
- 获取三网实时访客---无忧获客大数据
无牛_abc3
很多传统行业的公司与企业对于运营商大数据的理解还是很基础的,大多数都是在买资源程度的认识。一些敢于尝试运营商大数据获客的传统企业自然会受益颇多。运营商大数据所提供的获客服务也非常简单,就是将自身的用户数据资源、针对不同的企业去制定有个性化需求的获客标准,运营商大数据根据不同的企业,和行业去进行精准客户的部署和分配,让相关合作的企业通过运营商提供的CRM平台进行一个有效的触达。运营商大数据已经在全国
- 全面对比,深度解析 Ignite 与 Spark
xaio7biancheng
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- ignite redis_全面对比,深度解析 Ignite 与 Spark
weixin_39997696
igniteredis
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- 【自动化运维神器Ansible】Ansible常用模块之archive模块详解
IT成长日记
Ansible自动化运维指南自动化运维技术探索运维自动化ansiblearchive常用模块
目录1Ansiblearchive模块概述1.1archive模块的核心功能1.2为什么需要archive模块2archive模块工作原理3archive模块参数详解3.1必需参数:path3.2常用可选参数3.2.1dest3.2.2format3.2.3exclude3.3高级参数3.3.1remove3.3.2owner/group/mode4archive模块使用场景与示例4.1基础使用场
- DeepSeek在大数据领域正掀起一场深刻的变革
智海观潮
AI大数据deepseekAI
随着人工智能技术的飞速发展,DeepSeek作为一款行业领先的开源大模型,正在大数据领域掀起一场深刻的变革。其强大的数据处理和分析能力,为各行业带来了新的机遇和变革,推动数据与业务的深度融合。以下是DeepSeek在大数据领域的一些典型的潜在应用:1.加速数据处理与分析流程在传统的大数据应用中,数据收集、预处理和分析往往是一个繁琐且耗时的工程。DeepSeek凭借其高效的算法和强大的计算能力,极大
- Hive建表时开启事务机制导致insert失败: This command is not allowed on an ACID table.. with a non-ACID transaction
智海观潮
大数据Hivehive大数据
建表语句:createtableA(table_codestring,data_dtstring,update_dtstring)clusteredby(table_code)into1bucketsrowformatdelimitedfieldsterminatedby'\033'storedasorc--orc格式tablproperties('transactional'='true');执
- 面向现代数据湖仓的开放表格式对比分析:Iceberg、Hudi、Delta Lake与Paimon
piekill
大数据平台大数据sparkflinkbigdata数据仓库
文章目录第一章数据湖的演进:从存储到事务型平台1.1前湖仓时代:ApacheHive的局限性1.2湖仓一体的范式转移第二章架构深度剖析2.1ApacheIceberg:以元数据为中心的设计2.2ApacheHudi:流式优先、时间轴驱动的架构2.3DeltaLake:以事务日志为唯一真相源2.4ApachePaimon:面向实时湖仓的LSM树架构第三章核心能力对比分析3.1事务性与并发控制3.2数
- 【自动化运维神器Ansible】Ansible常用模块之unarchive模块详解
目录1unarchive模块概述1.1unarchive模块的核心价值2unarchive模块工作原理3unarchive模块参数详解3.1源文件相关参数3.1.1src3.1.2remote_src3.2目标路径参数3.2.1dest3.2.2extra_opts3.3高级控制参数3.3.1keep_newer3.3.2validate_certs4unarchive模块使用场景与示例4.1基础
- SAP BW数据仓库总览
weixin_42559081
[分享]SAPBW数据仓库简介本文从一个简单的业务场景-销售分析入手,介绍SAPBW(BusinessInfomationWarehouse)实现多维分析的基本方案与实现技术;结合销售分析的实际需求,给出了销售分析管理数据仓库在SAPBW(业务信息仓库)模块中的实现过程描述。1、数据仓库的基本理论1.1数据仓库数据仓库是对数据进行提炼、加工和集成含有一定量商务信息和意义的信息。数据仓库不是为了存储
- IoTDB智能分析节点AINode:时序数据分析的新引擎
时序数据说
iotdb数据分析数据挖掘时序数据库数据库大数据ai
在大数据与物联网的驱动下,时序数据处理需求激增,如何高效存储、管理并实时分析海量时序数据成为技术挑战。作为专为时序数据设计的数据库,IoTDB通过引入智能分析节点(AINode),将机器学习能力原生集成到数据库中,实现了“数据存储-分析-决策”的一体化闭环。本文将深入解析AINode的核心功能、技术优势及实际应用场景。AINode:IoTDB的智能分析引擎AINode是IoTDB推出的第三种内生节
- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- zookeeper和hadoop
zookeeper操作连接zkCli.sh-server服务名称查看客户端指令helpZooKeeper-serverhost:portcmdargs statpath[watch] setpathdata[version] lspath[watch] delquota[-n|-b]path ls2path[watch] setAclpathacl setquot
- Hadoop 之 ZooKeeper (一)
devalone
HadoopHadoopZooKeeperHbaseChubbyznode
Hadoop之ZooKeeper本文介绍使用Hadoop的分布式协调服务构建通用的分布式应用——ZooKeeper。ZooKeeper是Hadoop分布式协调服务。写分布式应用是比较难的,主要是因为部分失败(partialfailure).当一条消息通过网络在两个节点间发送时,如果发生网络错误,发送者无法知道接受者是否接收到了这条消息。接收者可能在发生网络错误之前已经收到了这条消息,也可能没有收到
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s