- 数据中台中的数据科学工作台:Jupyter集成方案
AI大数据智能洞察
大数据与AI人工智能jupyter信息可视化ideai
数据中台中的数据科学工作台:Jupyter集成方案关键词:数据中台、数据科学工作台、JupyterNotebook、数据科学、机器学习、数据可视化、协作开发摘要:本文深入探讨了在数据中台架构中集成JupyterNotebook作为数据科学工作台的完整解决方案。我们将从数据中台的基本概念出发,详细分析Jupyter在数据科学工作流中的核心作用,介绍多种集成方案和技术实现细节,并通过实际案例展示如何构
- 数据可视化:艺术与科学的交汇点,如何让数据“开口说话”?
Echo_Wish
大数据信息可视化数据分析数据挖掘
数据可视化:艺术与科学的交汇点,如何让数据“开口说话”?数据可视化,是科技与艺术的结合,是让冰冷的数字变得生动有趣的桥梁。它既是科学——讲究准确性、逻辑性、数据处理的严谨性;又是艺术——强调美感、信息传递的直觉性,以及与观众的共鸣。可以说,好的数据可视化不仅能让人快速理解复杂信息,还能激发思考、引发行动。科学——数据可视化的理性基石首先,数据可视化必须遵循严谨的数据处理和清晰的信息传递原则。这就要
- python编程第十四课:数据可视化
小小源助手
Python代码实例信息可视化python开发语言
Python数据可视化:让数据“开口说话”在当今数据爆炸的时代,数据可视化已成为探索数据规律、传达数据信息的关键技术。Python凭借其丰富的第三方库,为数据可视化提供了强大而灵活的解决方案。本文将带你深入了解Matplotlib库的基础绘图、Seaborn库的高级可视化以及交互式可视化工具Plotly,帮助你通过图表清晰地展示数据背后的故事。一、Matplotlib库基础绘图Matplotlib
- Python数据可视化:用代码绘制数据背后的故事
AAEllisonPang
Python信息可视化python开发语言
引言:当数据会说话在数据爆炸的时代,可视化是解锁数据价值的金钥匙。Python凭借其丰富的可视化生态库,已成为数据科学家的首选工具。本文将带您从基础到高级,探索如何用Python将冰冷数字转化为引人入胜的视觉叙事。一、基础篇:二维可视化的艺术表达1.1Matplotlib:可视化领域的瑞士军刀importmatplotlib.pyplotaspltimportnumpyasnpx=np.linsp
- SVG 在线编辑器
lly202406
开发语言
SVG在线编辑器引言随着互联网技术的发展,矢量图形在网页设计和数据可视化中扮演着越来越重要的角色。SVG(可缩放矢量图形)因其文件小、无限缩放不模糊的特性,成为了网页设计中常用的图形格式。SVG在线编辑器的出现,为设计师和开发者提供了极大的便利,使得图形的创建和修改变得更加高效。本文将详细介绍SVG在线编辑器的功能、应用场景以及发展趋势。SVG在线编辑器概述SVG在线编辑器是一种基于网页的图形编辑
- 使用Python和Gradio构建实时数据可视化工具
PythonAI编程架构实战家
信息可视化python开发语言ai
使用Python和Gradio构建实时数据可视化工具关键词:Python、Gradio、数据可视化、实时数据、Web应用、交互式界面、数据科学摘要:本文将详细介绍如何使用Python和Gradio框架构建一个实时数据可视化工具。我们将从基础概念开始,逐步深入到核心算法实现,包括数据处理、可视化技术以及Gradio的交互式界面设计。通过实际项目案例,读者将学习如何创建一个功能完整、响应迅速的实时数据
- 数据可视化:数据世界的直观呈现
卢政权1
信息可视化数据分析数据挖掘
在当今数字化浪潮中,数据呈爆炸式增长。数据可视化作为一种强大的技术手段,能够将复杂的数据转化为直观的图形、图表等形式,让数据背后的信息一目了然。无论是在商业决策、科学研究还是日常数据分析中,数据可视化都发挥着极为重要的作用。它帮助我们快速理解数据的分布、趋势、关联等特征,从而为进一步的分析和行动提供有力支持。接下来,我们将深入探讨数据可视化的奥秘,并通过代码示例展示其实际应用。一、Python数据
- Python 数据可视化神器—Pyecharts
代码输入中...
pythonecharts开发语言数据分析pycharm
前言Echarts是百度开源的一款数据可视化JS工具,数据可视化类型十分丰富,但是得通过导入js库在JavaWeb项目上运行。作为工作中常用Python的选手,不能不知道这款数据可视化插件的强大。那么,能否在Python中也能用到Echarts的功能呢?寻找中惊喜地发现了pyecharts,只需在python中安装该模块即可使用。安装常用的pip安装包一键安装pyecharts#pyecharts
- 【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博文章数据可视化分析-文章分类下拉框实现
java1234_小锋
NLPNLLP微博舆情分析python自然语言处理flask
大家好,我是java1234_小锋老师,最近写了一套【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)视频教程,持续更新中,计划月底更新完,感谢支持。今天讲解微博文章数据可视化分析-文章分类下拉框实现视频在线地址:2026版【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts+爬虫)视频教程(火爆连载更
- R for data science翻译笔记1.1 introduction
七月0317
MNE-Python翻译版-中文官方文档笔记信息可视化
本书第一章节(1.1-1.8)的目标是让读者尽快掌握数据探索的基本工具。数据探索是查看数据、快速生成假设、快速测试,然后不断重复的艺术。数据探索的目标是生成许多有希望的线索,我们可以稍后进行更深入的探索。在本书的这一部分中,你将学习一些有用的工具,它们可以立即带来回报:可视化是R编程的绝佳起点,因为反馈非常明显:你可以绘制优雅且信息量大的图形来帮助你理解数据。在数据可视化中,您将深入可视化,学习g
- Anaconda插件开发挑战赛
张文6.7
人工智能开发语言区块链AI编程
引言介绍Anaconda在数据科学和Python开发中的重要性插件生态系统的价值与Anaconda插件开发的意义概述挑战赛的目标与参赛者的预期收获Anaconda插件开发基础Anaconda平台的核心功能与插件架构开发环境搭建:AnacondaDistribution、conda与相关工具链插件类型与常见应用场景(如Jupyter扩展、IDE集成、数据可视化工具等)挑战赛关键技术要点插件开发的核心
- 如何在spring cloud项目中引入用python代码写的数据可视化展示页面,并在前端页面进行展示?【附相关源码,完整的代码实现(Python + Java + 前端)】
bug菌¹
springcloudpython信息可视化数据可视化展示页面前端页面bug菌问答团队
本文收录于《全栈Bug调优(实战版)》专栏,该专栏专注于分享我在真实项目开发中遇到的各类疑难Bug及其深层成因,并系统提供高效、可复现的解决思路和实操方案。无论你是刚入行的新手开发者,还是拥有多年项目经验的资深工程师,本专栏都将为你提供一条系统化、高质量的问题排查与优化路径,助力你加速成长,攻克技术壁垒,迈向技术价值最大化与职业发展的更高峰! 特别说明:文中部分技术问题来源于真实生产环境及网络公
- Python Pandas.cut函数解析与实战教程
皓月照山川
pandaspythonpandas开发语言
PythonPandas.cut函数解析与实战教程摘要pandas.cut是数据分析工具库Pandas中一个极其强大且常用的函数。它的核心功能是将连续的数值型数据根据指定的间断点(bins)进行分割,转换成离散化的区间类别(categoricaldata)。这种操作在数据预处理、特征工程和数据可视化中至关重要,例如,将用户的年龄分段、将考试分数评级、或将销售额划分为不同的等级。本文章将从基础用法到
- GaussDB 数据库架构师修炼(八) 等待事件(2)-ASP报告分析
小云数据库服务专线
GaussDB数据库架构师修炼之路gaussdb数据库架构数据库
1ASP报告简介ASP-ActiveSesionProfile(活跃会话档案信息),ASP每秒获取活跃会话事件,放到内存中,内存中的数据达阈值,会落盘gs_asp表中。ASPReport根据输入的时间段与slot个数,从内存和磁盘中取数据可视化到html中。2生成ASP报各-GUC参数说明ASP相关GUC参数GUC参数默认值说明enable_aspon是否开启活跃会话信息activesession
- 老码农和你一起学AI:Python系列-Matplotlib 核心架构
chilavert318
熬之滴水穿石matplotlibpython
在数据可视化领域,Matplotlib就像一位全能的画家——它能画出折线图、柱状图等基础图表,也能创作热力图、3D图等复杂作品。但要真正用好这位“画家”,首先得理解它的“创作工具”:Figure与Axes对象的关系、绘图的基本流程、图表保存的关键参数,以及如何统一调整图表风格。这些基础架构知识,是从“能画图”到“画好图”的关键。一、Figure与Axes如果把Matplotlib的绘图过程比作在画
- Python 数据分析实战:洞察 2025 热门行业发展新态势
目录一、案例背景二、代码实现2.1数据收集2.2数据探索性分析2.3数据清洗2.4数据分析2.4.1人工智能技术热点挖掘2.4.2汽车行业市场趋势分析2.4.3能源行业绿色能源发展预测三、主要的代码难点解析3.1数据收集3.2数据清洗-汽车市场数据异常值处理3.3数据分析-人工智能技术热点挖掘3.4数据分析-汽车行业市场趋势分析3.5数据可视化四、可能改进的代码4.1数据收集改进4.2数据清洗改进
- ELK学习(一) ElasticStack技术栈简介
左边有只汪
ElasticSearchELK
ELK是由三个技术组成的分别是ElasticSearch核心存储和检索引擎Logstash高吞吐量数据处理引擎Kibana数据可视化主要业务是做日志分析ElasticStack不光是由这几种技术还有新的成员Beats,它可以采集一切数据Beats下还分为以下几个模块FileBeat日志文件PacketBeat网络流量MetricBeat服务指标(CPU,内存情况)WinlogBeatwin日志采集
- Python数据可视化库之autoviz使用详解
概要在数据可视化的广阔领域中,快速且智能地将数据转化为直观图表,是数据分析师和开发者的共同需求。Python的autoviz库应运而生,它凭借“一键生成可视化”的强大功能,极大地简化了数据可视化流程。无论是处理简单数据集,还是复杂的多变量数据,autoviz都能自动分析数据特征,生成高质量可视化结果,成为提升数据分析效率的得力助手。安装与验证1、安装方法autoviz库的安装可以借助Python常
- 服务器生成图片
服务器生成图片通常是指通过服务器端的程序、算法或模型,根据输入的指令、参数或数据自动创建图像的过程。这种技术广泛应用于人工智能绘图、动态图像生成、数据可视化等领域。以下从常见实现方式、技术原理和应用场景三个方面详细介绍:一、常见实现方式基于AI模型的生成这是目前最主流的方式,通过训练好的深度学习模型(如扩散模型、GAN等)生成图片。典型模型:StableDiffusion、DALL・E、Midjo
- 【C++】使用箱线图算法剔除数据样本中的异常值
目录一、箱线图算法介绍二、五数概括计算解释三、四分位距(IQR)与异常值判定四、箱线图在数据处理中的应用1.异常值检测2.数据分布比较3.偏态与离散程度分析4.非参数数据展示五、箱线图的局限性六、代码实现及注释七、如果这篇文章能帮助到你,请点个赞鼓励一下吧ξ(✿>◡❛)~一、箱线图算法介绍箱线图(Boxplot)是一种基于统计学的数据可视化和数据处理工具,箱线图假设数据样本服从正态分布,通过五数概
- R 语言绘制六种精美热图:转录组数据可视化实践(基于 pheatmap 包)
医工交叉实验工坊
信息可视化r语言开发语言
在转录组Bulk测序数据分析中,热图是展示基因表达模式、样本聚类关系的核心可视化工具。一张高质量的热图不仅能清晰呈现数据特征,更能提升研究成果的展示效果。本文基于R语言的pheatmap包,整理了六种适用于不同场景的热图绘制方法,涵盖基础聚类、分组对比、通路注释等需求,私信即可获取全部代码,方便科研人员快速实现数据可视化。一、绘图前的数据准备热图绘制的核心是基因表达矩阵,数据格式的规范性直接影响后
- 用Python玩转地热能数据可视化:技术揭秘与实战指南
Echo_Wish
Python!实战!信息可视化python开发语言
用Python玩转地热能数据可视化:技术揭秘与实战指南今天咱们聊点特别的——地热能数据可视化。别觉得地热能听着很遥远,其实它是新能源领域里极具潜力的“绿色底气”。如何用Python技术精准、清晰地展现地热数据,不仅是科研人员的需求,也是推动地热能产业发展的关键一环。我这篇文章,咱既聊技术细节,也聊数据背后的故事。带你从数据采集、处理到可视化,深入浅出一网打尽,保准你看完能立刻动手写代码!为什么地热
- 用Python爬虫玩转数据可视化(实战向)
文章目录一、先来点有意思的!二、开整!数据抓取部分2.1选个软柿子捏2.2数据提取黑科技三、数据清洗骚操作3.1温度数据大改造3.2风力等级提取四、可视化ShowTime!4.1折线图基础款4.2进阶版热力图4.3动态图表黑科技五、避坑指南(血泪经验)六、还能玩得更花吗?七、完整代码哪里找?八、说点掏心窝的话一、先来点有意思的!你相不相信只需要30行代码,就能把网页上的原始数据变成酷炫的图表?今天
- 2025年8个热门Python Web开发框架,(非常详细)从零基础到精通,收藏这篇就够了!
黑客大白
python前端开发语言
Python拥有适合各种用例的框架,从全栈Web开发到数据可视化,为每位开发人员提供了所需的工具。得益于其活跃的社区和强大的生态系统,开发人员在构建Web应用时拥有广泛的选择。然而,选择数量之多可能会使您难以为您的项目选择合适的框架。这就是为什么我们回顾了用于构建Web应用程序的顶级Python框架,并比较了每个框架的优缺点。在本文中,我们将回顾以下框架:Reflex、Django、Flask、G
- 数据可视化
一百天成为python专家
信息可视化numpy人工智能python机器学习开发语言
4.1可视化介绍为什么要进行数据可视化?数据可视化=把抽象的数据“看得见”目的是让数据背后的规律、异常、趋势一目了然错误案例举例:饼图太多分块→看不出比例柱状图颜色混乱→无法聚焦图表标题模糊不清→不知图中所指4.2Matplotlib可视化4.2.1Matplotlib简介什么是MatplotlibMatplotlib是一个Python绘图库,广泛用于创建各种类型的静态、动态和交互式图表。它是数据
- 数据可视化7:MATLAB绘制堆叠环形柱状图
空脑小白
MATLAB可视化信息可视化matlab开发语言
堆叠环形柱状图(StackedDonutChart)是数据可视化中的一种复合图表,结合了堆叠柱状图和环形图的特点,主要用于展示多类别数据的构成比例及其层级关系。核心作用展示多层级的占比关系环形结构可直观显示整体与部分的关系(类似饼图),而堆叠设计允许在每一层环形中进一步细分数据,适合展示多维度的构成比例(如大类下的子类占比)。对比不同组别的构成差异通过多个同心环或并排的环形柱,可以对比不同组别(如
- python 常用库
feuiw
pythonpython
webdash简介一个用于构建交互式Web应用程序的Python框架,由Plotly公司开发,特别适合数据科学家、分析师和工程师快速创建数据可视化应用,而无需深入学习前端技术(HTML、CSS、JavaScript)。特点纯Python开发:无需编写前端代码,完全用Python语法即可构建交互式网页应用强大的数据可视化:内置Plotly图表库,支持超过40种图表类型高度交互性:支持滑块、下拉菜单、
- GeoJson 地图地理信息数据获取
郭宝
Web前端信息可视化GeoJSON
效果图:获取渠道:通过阿里数据可视化平台获取通过VectorMaps获取通过geojson来获取1、通过阿里数据可视化平台获取
- BI 系统数据看板全解析:让数据可视化驱动业务决策
SickeyLee
产品经理信息可视化数据分析数据挖掘
BI系统数据看板全解析:让数据可视化驱动业务决策在BI系统中,数据看板是连接原始数据与业务洞察的“桥梁”。它将零散的业务指标转化为直观的可视化图表,让产品经理、运营人员等角色能快速把握业务动态。一个设计精良的数据看板,不仅能清晰呈现核心数据,更能引导用户发现问题、洞察趋势。本文将聚焦BI系统数据看板的核心组成,详解综合数据、对比数据、区域分布和收益数据的设计要点,帮你理解如何让数据“说话”。一、数
- BI 系统数据看板全解析:让数据可视化驱动业务决策
SickeyLee
产品经理信息可视化数据分析数据挖掘
BI系统数据看板全解析:让数据可视化驱动业务决策在BI系统中,数据看板是连接原始数据与业务洞察的“桥梁”。它将零散的业务指标转化为直观的可视化图表,让产品经理、运营人员等角色能快速把握业务动态。一个设计精良的数据看板,不仅能清晰呈现核心数据,更能引导用户发现问题、洞察趋势。本文将聚焦BI系统数据看板的核心组成,详解综合数据、对比数据、区域分布和收益数据的设计要点,帮你理解如何让数据“说话”。一、数
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理