算法训练day39|动态规划 part02(LeetCode62.不同路径、63. 不同路径 II)

文章目录

  • 62.不同路径
    • 思路分析
    • 代码实现
  • 63. 不同路径 II
    • 思路分析
    • 代码实现
    • 思考总结

62.不同路径

题目链接
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:
算法训练day39|动态规划 part02(LeetCode62.不同路径、63. 不同路径 II)_第1张图片

输入:m = 3, n = 7
输出:28

示例 2:
输入:m = 2, n = 3
输出:3
解释: 从左上角开始,总共有 3 条路径可以到达右下角。
向右 -> 向右 -> 向下
向右 -> 向下 -> 向右
向下 -> 向右 -> 向右

示例 3:
输入:m = 7, n = 3
输出:28

示例 4:
输入:m = 3, n = 3
输出:6

提示:
1 <= m, n <= 100
题目数据保证答案小于等于 2 * 10^9

思路分析

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

  1. dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

所以初始化代码为:

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
  1. 确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

  1. 举例推导dp数组

算法训练day39|动态规划 part02(LeetCode62.不同路径、63. 不同路径 II)_第2张图片

代码实现

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i = 0; i < m; i++) dp[i][0] = 1;
        for (int j = 0; j < n; j++) dp[0][j] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};

63. 不同路径 II

题目链接
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
算法训练day39|动态规划 part02(LeetCode62.不同路径、63. 不同路径 II)_第3张图片
网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:
算法训练day39|动态规划 part02(LeetCode62.不同路径、63. 不同路径 II)_第4张图片
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2 解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
向右 -> 向右 -> 向下 -> 向下
向下 -> 向下 -> 向右 -> 向右

示例 2:
算法训练day39|动态规划 part02(LeetCode62.不同路径、63. 不同路径 II)_第5张图片
输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:
m = obstacleGrid.length
n = obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j] 为 0 或 1

思路分析

62.不同路径中我们已经详细分析了没有障碍的情况,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。
动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

所以代码为:

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]
    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
  1. dp数组如何初始化

在62.不同路径不同路径中我们给出如下的初始化:

vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:
算法训练day39|动态规划 part02(LeetCode62.不同路径、63. 不同路径 II)_第6张图片
下标(0, j)的初始化情况同理。

所以本题初始化代码为:

vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

  1. 确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

代码如下:

for (int i = 1; i < m; i++) {
    for (int j = 1; j < n; j++) {
        if (obstacleGrid[i][j] == 1) continue;
        dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
    }
}
  1. 举例推导dp数组

拿示例1来举例如题:
算法训练day39|动态规划 part02(LeetCode62.不同路径、63. 不同路径 II)_第7张图片
算法训练day39|动态规划 part02(LeetCode62.不同路径、63. 不同路径 II)_第8张图片

代码实现

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
    	if (obstacleGrid[obstacleGrid.size() - 1][obstacleGrid[0].size()- 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
            return 0;
        vector<vector<int>> dp(obstacleGrid.size(),vector<int>(obstacleGrid[0].size(),0));
        for(int i=0;i<dp.size();i++){
            if(obstacleGrid[i][0]==1) break;
            else dp[i][0]=1;

        } 
        for(int j=0;j<dp[0].size();j++) {
            if(obstacleGrid[0][j]==1) break;
            else dp[0][j]=1;
        }
        for(int i=1;i<dp.size();i++){
            for(int j=1;j<dp[0].size();j++){
                if(obstacleGrid[i][j]==1) continue;
                else dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[dp.size()-1][dp[0].size()-1];
    }
};

思考总结

只要考虑到,遇到障碍dp[i][j]保持0就可以了。

也有一些小细节,例如:初始化的部分,很容易忽略了障碍之后应该都是0的情况。


你可能感兴趣的:(算法与数据结构,算法,动态规划,c++,数据结构,leetcode)