- 实时数据流计算引擎Flink和Spark剖析
程小舰
flinkspark数据库kafkahadoop
在过去几年,业界的主流流计算引擎大多采用SparkStreaming,随着近两年Flink的快速发展,Flink的使用也越来越广泛。与此同时,Spark针对SparkStreaming的不足,也继而推出了新的流计算组件。本文旨在深入分析不同的流计算引擎的内在机制和功能特点,为流处理场景的选型提供参考。(DLab数据实验室w.x.公众号出品)一.SparkStreamingSparkStreamin
- OpenSIPS 邂逅 Kafka:构建高效 VoIP 消息处理架构
c_zyer
opensipsSIP消息队列kafkaopensipsvoip
使用场景使用步骤引入模块组装&发送数据消费数据故障转移使用场景异步日志处理:将OpenSIPS中的SIP信令日志、通话记录(CDR)等数据发送到Kafka队列中。事件通知与监控:利用OpenSIPS的event_interface模块将SIP事件(如呼叫建立、断开、注册等)推送到KafkaOpenSIPS中事件接口有以下类型:EVENT_DATAGRAM-PublishJSON-RPCnotifi
- Kafka事务机制详解
一碗黄焖鸡三碗米饭
Kafka全景解析kafka分布式Java副本事务分区大数据
目录Kafka事务机制详解1.Kafka中的事务概述2.Kafka事务的基本概念2.1精确一次处理(ExactlyOnceSemantics,EOS)2.2Kafka事务的工作流程3.Kafka事务的配置与使用3.1生产者端的事务配置3.2消费者端的事务配置4.Kafka事务的优势与限制4.1Kafka事务的优势4.2Kafka事务的限制5.总结在分布式系统中,事务性操作(如数据库事务)是非常重要
- kafka的ISR机制详解
inori1256
kafka分布式
Kafka的ISR机制ISR(In-SyncReplicas同步副本集)机制是一种用于确保数据可靠性和一致性的重要机制。一、ISR的定义ISR是指与Kafka分区中的Leader副本保持同步的Follower副本集合。这些副本已经复制了Leader副本的所有数据,并且它们的落后时间在一定范围内,因此被认为是可靠的、可以用于故障转移和数据恢复的副本。二、ISR的作用数据复制:当消息被写入Kafka的
- 一句话读懂Kafka:5W1H带你解锁分布式消息队列的奥密
落霞归雁
AI编程教育电商微信开放平台rabbitmq中间件
一句话读懂Kafka:5W1H带你解锁分布式消息队列的奥秘在当今数字化时代,消息队列(MessageQueue,简称MQ)已经成为分布式系统中不可或缺的组件,而ApacheKafka作为其中的佼佼者,以其卓越的性能和广泛的应用场景脱颖而出。今天,就让我们用一句话读懂Kafka,并通过5W1H(What、Why、Who、When、Where、How)的方式,深入剖析它的核心价值与技术魅力。一句话读懂
- Kafka——两种集群搭建详解 k8s
Michaelwubo
kafka分布式
1、简介Kafka是一个能够支持高并发以及流式消息处理的消息中间件,并且Kafka天生就是支持集群的,今天就主要来介绍一下如何搭建Kafka集群。Kafka目前支持使用Zookeeper模式搭建集群以及KRaft模式(即无Zookeeper)模式这两种模式搭建集群,这两种模式各有各的好处,今天就来分别介绍一下这两种方式1.1、Kafka集群中的节点类型一个Kafka集群是由下列几种类型的节点构成的
- 零基础学习性能测试第九章:全链路追踪-系统中间件节点监控
试着
性能测试学习中间件性能测试零基础
目录一、为什么需要监控中间件节点?二、主流中间件监控方案1.监控体系架构2.监控工具矩阵三、环境搭建实战1.部署Prometheus2.部署Grafana四、中间件监控配置实战1.Nginx监控2.Redis监控3.Kafka监控4.MySQL监控五、全链路追踪中的中间件监控1.SkyWalking与Prometheus集成2.全链路视角的中间件监控六、性能瓶颈定位实战1.瓶颈分析流程图2.典型瓶
- Flink Checkpoint 状态后端详解:类型、特性对比及场景化选型指南
ApacheFlink提供了多种状态后端以支持Checkpoint机制下的状态持久化,确保在故障发生时能够快速恢复状态并实现Exactly-Once处理语义。以下是几种常见状态后端的详细介绍及其对比情况,以及不同场景下的选型建议:1.MemoryStateBackend(内存状态后端)描述:MemoryStateBackend将状态数据存储在TaskManager的JVM堆内存中,并在Checkp
- Flink 自定义类加载器和子优先类加载策略
lifallen
Flink数据库数据结构大数据flinkjava分布式
子类优先加载Flink默认采用了子优先(Child-First)的类加载策略来加载用户代码,以解决潜在的依赖冲突问题。我们可以通过源码来证明这一点。ChildFirstClassLoader的实现Flink中负责实现“子优先”加载逻辑的核心类是ChildFirstClassLoader。其关键的loadClassWithoutExceptionHandling方法定义了类加载的顺序。//...ex
- Flink window 源码分析4:WindowState
北_鱼
Flinkflink大数据bigdata
Flinkwindow源码分析1:窗口整体执行流程Flinkwindow源码分析2:Window的主要组件Flinkwindow源码分析3:WindowOperatorFlinkwindow源码分析4:WindowState本文分析的源码为flink1.18.0_scala2.12版本。reduce、aggregate等函数中怎么使用WindowState?主要考虑reduce、aggregate
- Kafka 去 ZooKeeper 化实战:KRaft 架构高可用部署实践与运维提升之道
derek2026
部署实践kafka运维持续部署
Kafka去ZooKeeper化实战:KRaft架构高可用部署实践与运维提升之道一、为什么选择Kafka-Kraft架构?Kafka作为分布式消息系统的标杆,长期依赖ZooKeeper进行元数据管理。但Kafka-Kraft模式通过引入自管理的元数据仲裁机制,彻底摆脱了ZooKeeper依赖,带来三大核心优势:部署简化:减少运维组件,降低系统复杂度性能提升:元数据操作延迟降低40%稳定性增强:消除
- RocketMQ常见问题梳理
kk在加油
rocketmq
MQ常见问题深度剖析:消息不丢失、顺序性、幂等性与积压处理本文基于RocketMQ核心原理,结合Kafka/RabbitMQ对比,深入分析MQ四大核心问题解决方案一、消息不丢失保障机制消息丢失风险点跨网络传输:生产者→Broker、Broker→消费者、主从同步Broker缓存机制:PageCache异步刷盘导致数据未持久化极端故障:整个MQ集群宕机生产者保证方案1.发送确认机制//RocketM
- Flink实战(七十):监控(二)搭建flink可视化监控 Pushgateway+ Prometheus + Grafana (windows )
王知无(import_bigdata)
Flink系统性学习专栏flink大数据
1Flink的配置:在flink配置⽂件flink-conf.yaml中添加:metrics.reporter.promgateway.class:org.apache.flink.metrics.prometheus.PrometheusPushGatewayReportermetrics.reporter.promgateway.host:localhost#promgateway主要是Pus
- JDBC时间类型与Java类型、Flink SQL时间类型与Java类型的对应关系
哈哈很哈哈
javaflinksql
一、JDBC时间类型与Java类型的对应关系JDBC类型Java类型说明TIMESTAMPjava.sql.Timestamp表示日期和时间(含毫秒)DATEjava.sql.Date仅表示日期(不含时间)TIMEjava.sql.Time仅表示时间(不含日期)说明:java.sql.Timestamp继承自java.util.Date,可精确到纳秒(实际常用毫秒)。java.sql.Date和j
- Flink Oracle CDC logminer ogg 对比, PDB logminer CDC 测试
维度FlinkCDC(主库)FlinkCDC(备库)Flinkconnector(Kafka)ADG(ActiveDataGuard)同步机制基于LogMiner解析RedoLog需通过OGG同步备库基于LogMiner解析RedoLog需通过OGG捕获日志后写入Kafka物理复制,主备数据块一致架构特点需直连主库独立进程,低侵入性独立进程,低侵入性仅支持查询,无法捕获实时变更数据链路oracle
- 基于Prometheus的flink性能监控小坑记录
darkness0604
flink大数据java大数据flink
背景公司内的flink集群跑了挺长一段时间了,一直也没有对其进行一个比较完整的监控,最近打算着手做这件事情,经过网上的调研,目前公司采用的部署模式是per-job模式,最终选用了基于prometheus,把job指标推送到中间网关的pushgateway上面,然后prometheus去抓取pushgateway上面的信息,从而实现对flink做性能监控,最后通过Grafana进行展示。问题在接入过
- PushGateway+Prometheus+Grafana构建Flink实时监控
站在最高处呐喊的男人!
flinkflink大数据pushgatewayprometheusgrafana
#组件简介flinkAPP和linuxsystem两部分,是我们要收集指标数据的组件Pushgateway:是一个推送收集和推送数据的组件Node_exporter:数据导出组件Prometheus:系统监控和预警框架Grafana:可视化展示平台#环境搭建注意,如果浏览器访问不到,iptables-IINPUT-ptcp--dport9090-jACCEPT1.0.flink下载安装包https
- kafka的消息存储机制和查询机制
不辉放弃
kafka大数据开发数据库pyspark
Kafka作为高性能的分布式消息队列,其消息存储机制和查询机制是保证高吞吐、低延迟的核心。以下从存储机制和查询机制两方面详细讲解,包含核心原理、关键组件及工作流程。一、Kafka消息存储机制Kafka的消息存储机制围绕高可用、高吞吐、可扩展设计,核心是通过分区、副本、日志分段和索引实现高效存储与管理。1.基本组织单位:主题(Topic)与分区(Partition)主题(Topic):消息的逻辑容器
- 【kafka4源码学习系列】kafka4总体架构介绍
oraen
学习kafka架构
二kafka架构介绍学习一个系统之前很重要的一点就是先了解这个系统整体的架构,这能够使我们对整个系统有个总体的认识,清楚地知道这个系统有什么能力。这不仅帮助我们学习时快速定位到我们想要的内容,还能避免我们学习过程中在庞大的系统中迷失自己。所以首先我会介绍一下kafka的整体架构,包括这个kafka系统的整体架构,模块组成,模块的功能以及模块之间关系,以及各个模块之间是怎么共同构成这套系统的。kaf
- ogg同步Kafka到oracle,ORACLE OGG同步到KAFKA
ORACLEOGG同步到KAFKA1、介绍Kafka是一种高效的消息队列实现,经过订阅kafka的消息队列,下游系统能够实时获取在线Oracle系统的数据变动状况,实现业务系统javaogg同步全量数据方式:①经过数据泵方式基于SCN导出并导入到目标端,此方式用于Oracle到Oracle的ogg同步环境中。②经过ogg自己的初始化方式,初始化全量数据到目标端,此方式通用于全部环境,可是速度相对较
- oracle ogg 全量 增量,1.利用ogg实现oracle到kafka的增量数据实时同步.md
##利用ogg实现oracle到kafka的增量数据实时同步####前言>ogg即OracleGoldenGate是Oracle的同步工具,本文讲如何配置ogg以实现Oracle数据库增量数据实时同步到kafka中,其中同步消息格式为json。下面是源端和目标端的一些配置信息:|--|版本|OGG版本|IP|别名||:---------|:--:|-----------:|:-----------
- 第四篇:深入探讨Kafka消费者的架构和原理
Gemini技术窝
kafka架构java后端中间件
大家好!今天我们要深入探讨Kafka消费者的架构和原理。Kafka消费者是从Kafka集群中读取消息的客户端应用,其设计和实现直接影响消息处理的效率和可靠性。本文将介绍Kafka消费者和消费者组的原理和作用,使用示例代码和源码剖析消费者的参数和功能,并详细介绍Kafka消费者如何订阅主题和分区。希望通过这篇文章,你能全面理解Kafka消费者的工作机制。准备好了吗?让我们开始吧!文章目录一、Kafk
- Kafka消费者负载均衡策略
⼀个消费者组中的⼀个分⽚对应⼀个消费者成员,他能保证每个消费者成员都能访问,如果组中成员太多会有空闲的成员Kafka消费者负载均衡策略详解从分区分配算法到Rebalance机制,全面解析Kafka如何实现消费者间的负载均衡,并提供调优建议和问题解决方案。1.核心概念术语作用类比ConsumerGroup共享消费任务的消费者组外卖骑手团队PartitionTopic的物理分片配送区域划分Rebala
- 狂神说Linux笔记
是你牛天成
项目部署linux
B站视频狂神说LinuxJava开发之路:JavaSE,MySQL,前端(html,css,js),javaweb,SSM框架,SpringBootvue,SpringCloud,(mybatis-plusgit)LinuxLinux操作系统:Window、Mac消息队列(Kafka,RabbitMQ,RockeetMQ)缓存(Redis)搜索引擎(ElasticSearch)集群分布式(需要购买
- Kafka消费者负载均衡和数据积压问题
抱紧大佬大腿不松开
kafka负载均衡分布式大数据
在大数据领域中,ApacheKafka是一个常用的分布式消息队列系统,它被广泛应用于实时数据处理和流式数据处理场景。Kafka的消费者负载均衡机制和数据积压问题是使用Kafka时需要关注和解决的重要议题。消费者负载均衡机制是指如何将消息分配给多个消费者,以实现高吞吐量和高可扩展性。Kafka通过使用消费者组(consumergroup)的概念来实现负载均衡。一个消费者组可以包含多个消费者,每个消费
- kafka的消费者负载均衡机制
不辉放弃
kafka负载均衡分布式数据库
Kafka的消费者负载均衡机制是保证消息高效消费的核心设计,通过将分区合理分配给消费者组内的消费者,实现并行处理和负载均衡。以下从核心概念、分配策略、重平衡机制等方面详细讲解。一、核心概念理解消费者负载均衡前,需明确三个关键概念:消费者组(ConsumerGroup)多个消费者组成的逻辑组,共同消费一个或多个主题的消息。组内消费者共享一个group.id标识,Kafka通过该标识区分不同消费组。分
- 实时流式计算
实时流式计算一般流式计算会与批量计算相比较。在流式计算模型中,输入是持续的,可以认为在时间上是无界的,也就意味着,永远拿不到全量数据去做计算。同时,计算结果是持续输出的,也即计算结果在时间上也是无界的。流式计算一般对实时性要求较高,同时一般是先定义目标计算,然后数据到来之后将计算逻辑应用于数据。同时为了提高计算效率,往往尽可能采用增量计算代替全量计算。KafkaStreamKafkaStream是
- 掌握Apache Flink:实时数据处理与分析实操
泓三宝
本文还有配套的精品资源,点击获取简介:ApacheFlink是一个高效的开源流处理框架,专为实时数据处理和分析设计。本文将通过一个具体的代码示例,深入讲解Flink的核心概念如DataStream、FlatMap和ReduceMap,并展示如何将这些概念应用于实际场景。通过解析“wiki-edits”数据流的实例,我们将探讨如何使用Flink的API进行数据转换、聚合和实时分析,包括窗口和触发器的
- 数据科学与大数据技术专业的核心课程体系及发展路径全解析
YangYang9YangYan
大数据
CDA数据分析师证书含金量高,适应了未来数字化经济和AI发展趋势,难度不高,行业认可度高,对于找工作很有帮助。一、课程体系三维地图二、核心课程能力矩阵课程模块关键技能行业应用场景工具链分布式计算Spark调优用户行为日志分析AWSEMR/Databricks数据挖掘特征工程金融反欺诈模型Scikit-learn实时数据处理Flink窗口计算物联网设备监控Kafka+Flink数据治理元数据管理企业
- Kafka MQ 消费者应用场景
二六八
MQ消息队列kafkalinq分布式java
KafkaMQ消费者应用场景1消费者自动提交的时机在Kafka中默认的消费位移的提交方式是自动提交,这个由消费者客户端参数enable.auto.commit配置,默认值为true。当然这个默认的自动提交不是每消费一条消息就提交一次,而是定期提交,这个定期的周期时间由客户端参数auto.commit.interval.ms配置,默认值为5秒,此参数生效的前提是enable.auto.commit参
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源