- 时序数据库IoTDB的优势场景分析
时序数据说
时序数据库iotdb数据库物联网大数据
在当今数据爆炸的时代,物联网(IoT)设备产生的时序数据呈指数级增长。面对海量、高频的时序数据处理需求,传统关系型数据库显得力不从心。ApacheIoTDB(物联网数据库)作为一款专为物联网场景设计的时序数据库,凭借其独特架构在多个领域展现出显著优势。本文将深入探讨IoTDB最具竞争力的应用场景,帮助技术选型者做出明智决策。一、工业物联网(IIoT)场景工业物联网是IoTDB最能发挥其价值的领域之
- 【性能测试】Jmeter+Grafana+InfluxDB+Prometheus Windows安装部署教程
软件测试-阿涛
性能测试jmetergrafanaprometheus压力测试性能优化测试工具
一、工具作用与整体架构1.1各工具核心作用工具作用描述关键特性Jmeter性能测试工具,模拟多用户并发请求,生成测试数据支持HTTP/HTTPS、数据库等多种协议,可自定义测试场景InfluxDB时序数据库,专门存储时间序列数据(如Jmeter测试结果)高写入性能,支持Flux查询语言,适合存储海量测试指标Prometheus时序数据库,专注于系统监控指标收集(如CPU、内存、网络)支持数据拉取(
- tdengine使用感受
玖五二七
tdenginetdengineTSDB时序数据库
TDenigne是一款现代的时序(TimeSeriesDatabase)数据库,之前在做项目的时候都是用SQL数据库去存历史日志信息的。直到一个项目需要对设备的历史记录落库。这是时序数据库使用的典型场景,虽然之前一直用SQL数据库,但是用过都知道,在数据量大的时候会导致分页卡顿,甚至是无法分页。这个项目使用时序数据库再合适不过了1它的历史数据是不会修改的2设备数量多,种类单一3种类后期可以扩展4需
- InfluxDB保姆级教程!部署+Python操作时序数据,监控场景必备
总有刁民想爱朕ha
python开发语言Influxdb
InfluxDB保姆级教程!部署+Python操作时序数据,监控场景必备!"为什么运维半夜总被报警吵醒?""为什么老板要的实时报表总是延迟?"答案很可能是:你的时序数据库没选对!当每秒处理数万条监控数据、百万级IoT设备实时上报时,传统数据库直接崩盘!InfluxDB就是为此而生的高性能时序数据库,今天带你从部署到Python操作一站式通关!一、InfluxDB:时间序列数据的"闪电侠"什么叫时序
- 这才是你需要了解的时序数据库 Apache-IoTDB 源码解析之系统架构!
AI科学小老师
个人博客导航页(点击右侧链接即可打开个人博客):大牛带你入门技术栈1.系统架构1.1系统简介以上示意图可能非常简单,但我觉得足够表明一个整体架构。当一台设备、一辆车连接到协议网关后,便开始了真正的收发数据。一般通信的方式都是基于tcp,搞一段二进制协议,所以协议网关基本要做的工作就是完成对连接的管理、完成对数据的收发及编解码。当数据完成编解码之后一般会发往消息队列当中,一般都是Kafka之中。用来
- 时序数据库 Apache-IoTDB 源码解析之系统架构(二)
zhoumouren88
技术
上一章聊到时序数据是什么样,物联网行业中的时序数据的特点:存量数据大、新增数据多(采集频率高、设备量多)。详情请见:时序数据库Apache-IoTDB源码解析之前言(一)打一波广告,欢迎大家访问IoTDB仓库,求一波Star。这一章主要想聊一聊:物联网行业的基本系统架构,及使用数据库遇到的需求与挑战IoTDB的功能特点及系统架构车联网因为本人是在做车联网行业,所以对这个行业的信息了解更深入一些,能
- 时序数据库IoTDB好不好?
时序数据说
时序数据库数据库iotdb物联网开源
时序数据库IoTDB(InternetofThingsDatabase)是专为物联网场景设计的一款开源时序数据库系统,由清华大学团队开发并贡献给Apache基金会。经过多年发展,IoTDB已经在工业物联网、车联网、能源电力等多个领域得到广泛应用。那么IoTDB究竟好不好?下面我将从几个核心优势来分析。一、专为物联网优化的存储架构分层存储设计:IoTDB采用"内存缓冲区+磁盘文件+分布式存储"的分层
- 时序数据库主流产品概览
时序数据说
时序数据库数据库物联网iotdb大数据
时序数据库(TimeSeriesDatabase,TSDB)是专为处理时间序列数据优化的数据库系统,近年来随着物联网(IoT)、金融科技、工业互联网等领域的快速发展而备受关注。本文将介绍当前主流的时序数据库产品。一、时序数据库概述时序数据是带时间戳记录的数据点序列,具有以下特点:数据时间属性强数据通常为追加写入近期数据访问频率高于历史数据数据量通常非常庞大,需要高效的压缩技术时序数据库针对这些特点
- TDengine时序数据库数据写入操作详解
沈宝彤
TDengine时序数据库数据写入操作详解引言TDengine作为一款高性能的时序数据库,其数据写入方式与传统关系型数据库有所不同。本文将详细介绍TDengine中各种数据写入方式的特点和使用场景,帮助开发者更好地理解和应用TDengine的数据写入功能。基础写入操作单条数据写入在TDengine中,最基本的写入方式是使用INSERT语句向单个子表写入一条数据。以智能电表场景为例:--指定列名写入
- 时序数据库在数据库领域的应用前景
数据库管理艺术
数据库时序数据库strutsai
时序数据库在数据库领域的应用前景关键词:时序数据库、时间序列数据、物联网、监控系统、金融分析、大数据、实时分析摘要:本文深入探讨了时序数据库在现代数据管理中的关键作用和应用前景。我们将从时序数据的基本特性出发,分析时序数据库的核心架构和设计原理,比较主流时序数据库产品的技术特点,并通过实际案例展示其在物联网、金融科技、运维监控等领域的应用价值。文章还将提供时序数据库选型指南,探讨未来技术发展趋势,
- 时序数据库在数据库领域的行业应用
数据库管理艺术
数据库时序数据库ai
时序数据库在数据库领域的行业应用关键词:时序数据库、数据库领域、行业应用、时间序列数据、实时分析摘要:本文深入探讨了时序数据库在数据库领域的行业应用。首先介绍了时序数据库的背景知识,包括其目的、适用读者、文档结构和相关术语。接着阐述了时序数据库的核心概念、架构和工作原理,通过Python代码详细讲解了核心算法。还介绍了相关的数学模型和公式,并举例说明。在项目实战部分,给出了开发环境搭建、源代码实现
- 时序数据库在工业物联网领域的核心优势与应用价值
时序数据说
时序数据库物联网数据库iotdb大数据
一、工业物联网的数据挑战与需求工业物联网(IIoT)正在重塑全球制造业格局,通过连接设备、传感器和控制系统,实现了生产过程的数字化与智能化。然而,这一转型也带来了前所未有的数据管理挑战:海量数据:单个工厂可能部署数万个传感器,每秒产生数千万数据点高速写入:工业设备常需毫秒级数据采集,对数据库写入性能要求极高严格时效:质量控制、故障预测等场景要求实时数据分析长期存储:设备生命周期数据需保存数年甚至数
- 时序数据库的工业级对决:对比 Apache IoTDB 和 InfluxDB
时序数据说
时序数据库apacheiotdb数据库大数据开源
在数字化浪潮中,物联网(IoT)与工业大数据领域蓬勃发展,时序数据呈爆发式增长。时序数据库作为管理这类数据的核心工具,其性能、功能和适应性直接影响到整个系统的运行效率与价值实现。ApacheIoTDB和InfluxDB作为时序数据库领域的佼佼者,被广泛应用于各类场景。深入剖析二者区别,对开发者、企业架构师和数据管理者而言,不仅能为项目选型提供科学依据,还能助力挖掘数据的最大价值。一、诞生背景与社区
- 时序数据库IoTDB与OpenTSDB的对比分析
时序数据说
时序数据库iotdbopentsdb数据库大数据
在物联网与大数据场景下,时序数据库的选择对于系统性能、数据存储与分析能力至关重要。本文将围绕ApacheIoTDB与OpenTSDB这两款开源时序数据库进行对比分析,从分布式架构、部署易用性、分析与计算能力、性能表现以及产品迭代与维护情况五个关键维度展开,旨在为面临海量设备接入和实时数据分析需求的物联网架构师提供客观的技术选型参考。一、分布式架构ApacheIoTDB:IoTDB原生支持分布式
- 工业物联网中的时序数据库应用
1.引言工业物联网(IndustrialInternetofThings,IIoT)通过传感器、边缘计算和云计算等技术,实现设备数据的实时采集、存储与分析,以提高生产效率、预测设备故障并优化资源管理。然而,IIoT环境通常涉及高频、海量、多源异构的时序数据,传统数据库(如MySQL、Oracle)难以满足其高吞吐写入、低延迟查询和高效存储的需求。时序数据库(Time-SeriesDatabase,
- 时序数据库:数据库领域的未来之星
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库时序数据库ai
时序数据库:数据库领域的未来之星关键词:时序数据库、时间序列数据、物联网、大数据分析、数据库优化、TSDB、实时数据处理摘要:本文深入探讨了时序数据库(TimeSeriesDatabase,TSDB)这一新兴数据库技术。我们将从基本概念入手,分析时序数据库的核心原理和架构设计,详细讲解其特有的数据模型和存储机制。通过实际代码示例展示如何使用主流时序数据库处理时间序列数据,并探讨其在物联网、金融科技
- InfluxDB 数据模型:桶、测量、标签与字段详解(一)
计算机毕设定制辅导-无忧
#InfluxDBdb
一、引言**在大数据和物联网蓬勃发展的当下,时间序列数据的处理需求呈爆发式增长。InfluxDB作为一款高性能的开源时序数据库,凭借其卓越的特性,在时序数据库领域占据了重要地位,被广泛应用于各种场景。InfluxDB专为时间序列数据设计,拥有高效的存储和查询性能。它采用独特的存储引擎,能够快速写入大量带有时间戳的数据,并支持灵活的查询操作。其核心设计针对时间序列数据的特点进行了优化,包括时间索引、
- 时序数据库选型避坑全攻略:IoTDB性能与成本双杀的秘密!
LCG元
数据库时序数据库iotdbjava
文章目录一、架构设计深度解析1.1IoTDB架构图谱1.2核心流程对比二、企业级实战代码2.1Python数据写入示例2.2TypeScript客户端实现2.3集群配置YAML三、性能对比分析四、生产部署方案4.1安全加固配置4.2安全策略实施五、技术前瞻分析5.1云原生演进路径5.2新型存储引擎预测六、技术图谱附录一、架构设计深度解析1.1IoTDB架构图谱数据写入协议适配层内存表管理持久化引擎
- 时序数据库选型全指南:为什么越来越多企业选择IoTDB?
Loving_enjoy
计算机学科论文创新点机器学习facebook课程设计经验分享
>在工业物联网爆发式增长的今天,一台风力发电机每秒产生200+数据点,一座智慧工厂每天新增10亿级数据记录——传统数据库已无法承受时序数据的洪流。###时序数据:数字时代的脉搏时序数据(Time-SeriesData)是以时间戳为索引的连续数据流,广泛存在于物联网设备监控、金融交易记录、应用性能监测等场景。这类数据具有三大特性:-**海量性**:单个设备每秒可产生多条数据-**时效性**:新数据价
- 大数据时代下的时序数据库选型指南:基于工业场景的IoTDB技术优势与适用性研究
Loving_enjoy
计算机学科论文创新点机器学习facebook经验分享课程设计
>在宝钢集团的智能工厂里,5万多个传感器每秒产生150万+数据点,传统数据库系统每天积压3TB未处理数据——这揭示了工业4.0时代的核心矛盾:**海量时序数据处理能力已成为智能制造的关键瓶颈**。###工业时序数据的四大特殊性工业场景下的时序数据与传统互联网数据存在本质差异:1.**高精度时间要求**-数控机床振动监测需微秒级时间戳-电网故障定位要求时间同步精度≤1μs2.**多源异构性**```
- TensorBase开发者快速入门指南
宗隆裙
TensorBase开发者快速入门指南tensorbasetensorbase/tensorbase:是一个现代的GPU加速的张量数据库。适合用于大规模数据分析和机器学习。项目地址:https://gitcode.com/gh_mirrors/te/tensorbase前言TensorBase是一个基于Rust构建的高性能时序数据库,专为大规模数据分析场景设计。本文将详细介绍如何搭建TensorB
- 一场 6 点半开启的慢跑,是我们对八周年最真实的记录
今天,涛思数据八岁了。从2017年成立到现在,已经过去了整整八年。我们用一款开源时序数据库——TDengine,把中国团队的技术能力写进了全球开发者的代码库,也写进了越来越多行业用户的生产系统。八年时间,说长不长,说短也不短。我们经历了初创时的摸索,度过了技术路径尚未被验证的阶段,也一步步走到了今天这个节点:我们仍在奔跑,但不再孤身。这一次,我们选择用一条“慢跑”路线,回望这八年的路。详情关注TD
- 时序数据库 TDengine × SSRS:专为工业、能源场景打造的报表解决方案
每当听到“做报表”三个字,是不是内心都会先叹口气?尤其在工业、能源、制造等场景,面对那些结构固定、字段繁多、格式要求严苛的报表任务,用Excel手动拼,真的是既费时又容易出错。现在解决方案来了——时序数据库TDengine与SQLServerReportingServices(SSRS)已经完成无缝集成!高性能时序数据库+企业级报表平台,帮你用更少的操作、更高的效率,制作出更稳定、更规范的专业报表
- 时序数据库 TDengine × SSRS:三步搞定自动化报表体系
数据库sql
每当听到“做报表”三个字,是不是内心都会先叹口气?尤其在工业、能源、制造等场景,面对那些结构固定、字段繁多、格式要求严苛的报表任务,用Excel手动拼,真的是既费时又容易出错。现在解决方案来了——时序数据库TDengine与SQLServerReportingServices(SSRS)已经完成无缝集成!高性能时序数据库+企业级报表平台,帮你用更少的操作、更高的效率,制作出更稳定、更规范的专业报表
- 时序数据库:高效处理时间序列数据的核心技术
时序数据说
时序数据库数据库开源物联网iotdb
时序数据库概述时序数据库(TimeSeriesDatabase,TSDB)是一种专门为存储、处理和查询时间序列数据而优化的数据库系统。随着物联网、金融科技、工业互联网等领域的快速发展,时序数据呈现出爆炸式增长,传统的关系型数据库在处理这类数据时面临诸多挑战,时序数据库应运而生并成为关键技术解决方案。时序数据的特点时序数据具有几个显著特征,这些特征直接影响了时序数据库的设计理念:时间属性:每条记录都
- 时序数据库 TDengine × Node-RED:连接你的“数”与“控”
数据库sql
在工业场景中,我们经常会遇到这样的需求:设备数据上来之后,既要能存、能查,还希望能实时触发告警、控制现场设备。但如果从头写程序、配接口,成本不低、周期也长。这时候,一款能低代码快速串起“采集-存储-分析-控制”全流程的工具,往往能省下不少力气。现在,时序数据库TDengine与Node-RED正式打通,二者结合可为工业IoT打造一套真正“开箱即用”的全栈式解决方案。从毫秒级数据写入,到实时查询,再
- 时序数据库IoTDB可实现的基本操作及命令汇总
时序数据说
时序数据库iotdb数据库物联网大数据开源
一、数据写入、删除与导出1.1数据写入在物联网场景下,元件产生的数据通常会自动写入。但有时,需要修改过去的数据,可以使用INSERT语句插入修改后的值,覆盖原数据。示例:INSERTINTOroot.BHSFC.Q1.W003(timestamp,speed)VALUES(1657472400000,2);1.2数据删除1.2.1SQL语句删除删除整个时间序列:DELETEFROMroot
- 数据库领域下的时序数据库并发控制
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&Agent数据库时序数据库ai
时序数据库并发控制:原理、实现与最佳实践关键词:时序数据库、并发控制、MVCC、时间戳排序、乐观并发控制、分布式事务、性能优化摘要:本文深入探讨时序数据库中的并发控制机制,从基本原理到实际实现进行全面剖析。文章首先介绍时序数据库的特点和并发控制挑战,然后详细分析MVCC、时间戳排序等核心算法原理,并通过代码示例展示实现细节。接着探讨分布式环境下的特殊考量,提供性能优化策略和实际应用案例。最后展望未
- InfluxDB 3 Core 持久化机制深度解析:高可靠实时数据引擎的设计哲学与工业实践
梦想画家
数据库InfluxDB分层持久化架构
本文深入拆解InfluxDB3Core的数据持久化架构,涵盖写入流程、故障恢复、存储引擎设计,并结合物联网、金融监控等场景分析其高可靠性实现逻辑。通过对比传统时序数据库架构与性能实测数据,揭示新一代引擎如何平衡实时性与数据安全性,为大规模时序数据处理提供生产级保障。一、持久化核心机制:从写入到落盘的全链路保护1.分层持久化架构InfluxDB3Core采用三级数据保护策略:写入请求→内存缓冲区(V
- 技术调研:时序数据库(一)
myskybeyond
时序数据库时序数据库数据库
选择时序数据库时,选择当下主流的解决方案。目前主流的开源解决方案有InfluxDB、TDengine和TimescaleDB。下文从多个维度对比分析,最终根据需求做出选型决策。1.核心架构与设计理念数据库架构特点核心优势InfluxDB-专为时序数据设计的分布式数据库-基于时间线(TimeSeries)模型-开源版(OSS)与商业版(Cloud/Enterprise)功能差异大高写入吞吐量、原生支
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数