深入理解Java虚拟机---类加载机制

类加载机制

  • 什么是类加载机制
  • 类加载的时机
  • 类加载的过程
    • 加载
    • 验证
      • 文件格式验证
      • 元数据验证
      • 字节码验证
      • 符号引用验证
    • 准备
    • 解析
    • 初始化
  • 类加载器
    • 双亲委派模型

什么是类加载机制

虚拟机把描述类的数据从 Class 文件加载到内存,并对数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的 Java 类型,这就是虚拟机的类加载机制。
在Java中,类型的加载、连接和初始化过程都是在程序运行期间完成的,这种策略虽然会令类加载时稍微增加一些性能开销,但是会为Java应用程序提高高度的灵活性,Java里天生可以动态扩展的语言特性就是依赖运行期动态加载动态连接这个特点实现的。

类加载的时机

类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载(Loading)验证(Verification)准备(Preparation)解析(Resolution)初始化(Initialization)、**使用(Using)卸载(Unloading)**七个阶段,其中验证、准备、解析三个部分统称为连接(Linking)
深入理解Java虚拟机---类加载机制_第1张图片

对于初始化阶段,Java虚拟机规范则是严格规定了有且只有五种情况必须立即对类进行初始化:
(1)遇到new、getstatic、putstatic或invokestatic这四条字节码指令时,如果类没有进行过初始化,则需要先触发其初始化。生成这四条指令的最常见的Java代码场景是:使用new关键字实例化对象的时候、读取或设置一个类的静态字段(被final修饰、已在编译期把结果放入常量池的静态字段除外)的时候,以及调用一个类的静态字段的时候。
(2)使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没进行过初始化,则需要先触发其初始化。
(3)当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。
(4)当虚拟机启动时,用户需要指定一个要执行的主类(包括main()方法的那个类),虚拟机会先初始化这个主类。
(5)当使用JDK1.7的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStatic、REF_putStatic、REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类还没有进行过初始化,则需要先触发其初始化。

这五种场景中的行为称为对一个类进行主动引用。除此之外,所有引用类的方式都不会触发初始化,称为被动引用。
被动引用
(1)通过子类引用父类的静态字段,不会导致子类初始化。
(2)通过数组定义来引用类。
(3)调用类的常量,常量在编译阶段会存入调用类的常量池中,本质上并没有直接引用到定义常量的类,因此不会触发定义常量的类的初始化。

类加载的过程

加载

在加载阶段,虚拟机需要完成以下三件事情:
(1)通过一个类的全限定名来获取定义此类的二进制字节流。
(2)将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
(3)在内存中生成一个代表这个类的java.lang.Class对象,作为方法区的这个类的各种数据的访问入口。

相对于类加载过程的其他阶段,一个非数组类的加载阶段(准确地说,是加载阶段中获取类的二进制字节流的动作)是开发人员可控性最强的,因为加载阶段既可以使用系统提供的引导类加载器来完成,也可以由用户自定义的类加载器去完成,开发人员可以通过定义自己的类加载器去控制字节流的获取方式(即重写一个类加载器的loadClass()方法)。
对于数组类而言,情况就有所不同,数组类本身不通过类加载器创建,它是由Java虚拟机直接创建的。但数组类与类加载器仍然有很密切的关系,因为数组类的元素类型(Element Type,指的是数组去掉所有维度的类型)最终是要靠类加载器去创建,一个数组类(下面简称为C)创建过程就遵循一下规则:如果数组的组件类型(Component Type,指的是数组去掉一个维度的类型)是引用类型,那就递归采用本文章中定义的加载过程去加载这个组件类型,数组C将在加载该组件类型的类加载器的类名称空间上被标识(这点很重要,一个类必须与类加载器一起确定唯一性)。如果数据的组件类型不是引用类型(例如:init[]数组),Java虚拟机将会把数组C标记为与引导类加载器关联。数组类的可见性与它的组件类型的可见性一致,如果组件类型不是引用类型,那数组类的可见性将默认为public。

加载阶段完成后,虚拟机外部的二进制字节流就按照虚拟机所需的格式存储在方法区之中,方法区中的数据存储格式由虚拟机实现自行定义,虚拟机规范未规定此区域的具体数据结构。然后在内存中实例化一个java.lang.Class类的对象(并没有明确规定是在Java堆中,对于HotSpot虚拟机而言,Class对象比较特殊,它虽然是对象,但是存放在方法区里面),这个对象将作为程序访问方法区中的这些类型数据的外部接口。
加载阶段与连接阶段的部分内容是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始,但这些夹在加载阶段之中进行的动作,仍然属于连接阶段的内容,这两个阶段的开始时间仍然保持着固定的先后顺序。

验证

这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。验证阶段大致上会完成下面四个阶段的检验动作:文件格式验证元数据验证字节码验证符号引用验证

文件格式验证

第一阶段要验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理。这一阶段可能包括下面这些验证点:是否以魔数(Magic Number)0xCAFEBABE开头、主和次版本号是否在当前虚拟机处理范围之内、常量池的常量中是否有不被支持的常量类型等等。验证阶段的主要目的是保证输入的字节流能正确地解析并存储于方法区之内,格式上符合描述一个Java类型信息的要求。这阶段的验证是基于二进制字节流进行的,只有通过了这个阶段的验证后,字节流才会进入内存的方法区中进行存储。

元数据验证

第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合Java语言规范的要求。验证点如下:这个类是否有父类(除了java.lang.Object之外,所有的类都应当有父类)、这个类的父类是否继承了不允许被继承的类(被final修饰的类)、如果这个类不是抽象类,是否实现了其父类或接口之中要求实现的所有方法等等。第二阶段的主要目的是对类的元数据信息进行语义校验,保证不存在不符合Java语言规范的元数据信息。

字节码验证

主要目的是通过数据流和控制流分析,确定程序语义是合法的、符合逻辑的。这个阶段将对类的方法体进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的事件,例如:保证任意时刻操作数栈的数据类型与指令代码序列都能配合工作,例如不会出现类似这样的情况:在操作栈放置了一个int类型的数据,使用时却按long类型来加载入局部变量表中、保证跳转指令不会跳转到方法体以外的字节码指令上等等。

符号引用验证

最后一个阶段的校验发生在虚拟机将符号引用转化为直接引用的时候。符合引用验证可以看做是对类自身以外(常量池中的各种符号引用)的信息进行匹配性校验,通常需要校验下列内容:符号引用中通过字符串描述的全限定名是否能找到对应的类、在指定类中是否存在符合方法的字段描述符以及简单名称所描述的方法和字段等等。符号引用验证的目的是确保解析动作能正常执行,如果无法通过符号引用验证,那么将会抛出一个java.lang.IncompatibleClassChangeError异常的子类,如java.lang.IllegalAccessError、java.lang.NoSuchFieldError等。

准备

准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些变量所使用的的内存都将在方法区中进行分配。这个阶段中有两个容易产生混淆的概念:首先,这时候进行内存分配的仅包括类变量(被static修饰的变量),而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中。其次,这里所说的初始值通常情况下是数据类型的零值,假设一个类变量的定义为:

public static int value = 123;

那变量value在准备阶段过后的初始值为0而不是123,因为这时候尚未开始执行任何Java方法,而把value赋值为123的putstatic指令是程序被编译后,存放于类构造器()方法之中,所以把value赋值为123的动作将在初始化阶段才会执行。

解析

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程,在Class文件中它以CONSTANT_Class_info、CONSTANT_Fieldref_info、CONSTANT_Methodref_info等类型的常量出现。
符号引用:符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可。符号引用与虚拟机实现的内存布局无关,引用的目标并不一定已经加载到内存中。各种虚拟机实现的内存布局可以各不相同,但是它们能接受的符号引用必须都是一致的,因为符号引用的字面量形式明确定义在Java虚拟机规范的Class文件格式中。
直接引用:直接引用可以是直接指向目标的指针、相对偏移量或是一个能间接定位到目标的句柄。直接引用是和虚拟机实现的内存布局相关的,同一个符号引用在不同虚拟机实例上翻译出来的直接引用一般不会相同。如果有了直接引用,那引用的目标必定已经在内存中存在。
解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符七类符号引用进行,分别对应于常量池的CONSTANT_Class_info、CONSTANT_Fieldref_info、CONSTANT_Methodref_info、CONSTANT_InterfaceMethodref_info、CONSTANT_MethodType_info、CONSTANT_MethodHandle_info和CONSTANT_InvokeDynamic_info七种常量类型。

初始化

类加载过程中,除了在加载阶段用户应用程序可以通过自定义类加载器参与之外,其余动作完全由虚拟机主导和控制。到了初始化阶段,才真正开始执行类中定义的Java程序代码
在准备阶段,变量已经赋过一次系统要求的初始值,而在初始化阶段,则根据程序员通过程序制定的主观计划去初始化类变量和其他资源,或者可以从另外一个角度来表达:初始化阶段是执行类构造器clinit()方法的过程。
clinit()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{}块)中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序所决定的,静态语句块中只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句块可以赋值,但是不能访问。

类加载器

把类加载阶段中的通过一个类的全限定名来获取描述此类的二进制字节流这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需要的类。实现这个动作的代码模块称为类加载器。对于任意一个类,都需要由加载它的类加载器和这个类本身一同确立其在Java虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间。

双亲委派模型

绝大部分Java程序都会使用到以下三种系统提供的类加载器。

启动类加载器(Bootstrap ClassLoader):这个类加载器负责将存放在*\lib目录中的,或者被-Xbootclasspath参数所指定的路径中的,并且是虚拟机识别的(仅按照文件名识别,如rt.jar,名字不符合的类库即使lib目录中也不会被加载)类库加载到虚拟机内存中。启动类加载器无法被Java程序直接引用,用户在编写自定义类加载器时,如果需要把加载请求委派给引导类加载器,那直接使用null代替即可。
扩展类加载器(Extension ClassLoader):这个类加载器由sun.misc.Launcher$ ExtClassLoader实现,它负责加载\lib\ext目录中的,或者被java.ext.dirs系统变量所制定的路径中的所有类库,开发者可以直接使用扩展类加载器。
应用程序类加载器(Application ClassLoader):这个类加载器由sun.misc.Launcher$App-ClassLoader实现。由于这个类加载器是ClassLoader中的getSystemClassLoader()方法的返回值,所以一般也称它为系统类加载器。它负责加载用户类路径(ClassPath)上所指定的类库,开发者可以直接使用这个类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

双亲委派模型要求除了顶层的启动类加载器外,其余的类加载器都应当有自己的父类加载器。这里类加载器之间的父子关系一般不会以继承(Inheritance)的关系来实现,而是都使用组合(Composition)关系来复用父加载器的代码。流程为:先检查是否已经被加载过,若没有加载则调用父加载器的loadClass()方法,若父加载器为空则默认使用启动类加载器作为父加载器。如果父类加载器失败,抛出ClassNotFoundException异常后,再调用自己的findClass()方法进行加载。

来源:《深入理解Java虚拟机》

你可能感兴趣的:(java,jvm,开发语言)