- 实时数据流计算引擎Flink和Spark剖析
程小舰
flinkspark数据库kafkahadoop
在过去几年,业界的主流流计算引擎大多采用SparkStreaming,随着近两年Flink的快速发展,Flink的使用也越来越广泛。与此同时,Spark针对SparkStreaming的不足,也继而推出了新的流计算组件。本文旨在深入分析不同的流计算引擎的内在机制和功能特点,为流处理场景的选型提供参考。(DLab数据实验室w.x.公众号出品)一.SparkStreamingSparkStreamin
- Git 与 GitHub 的对比与使用指南
一念&
其它gitgithub
Git与GitHub的对比与使用指南在软件开发中,Git和GitHub是两个密切相关但本质不同的工具。下面我将逐步解释它们的定义、区别、核心概念以及如何协同使用,确保内容真实可靠,基于广泛的技术实践。1.什么是Git?Git是一个分布式版本控制系统,由LinusTorvalds于2005年创建。它的核心功能是跟踪代码文件的变化,帮助开发者管理项目历史记录、协作和回滚错误。Git是开源的,可以在本地
- 最新阿里四面面试真题46道:面试技巧+核心问题+面试心得
风平浪静如码
前言做技术的有一种资历,叫做通过了阿里的面试。这些阿里Java相关问题,都是之前通过不断优秀人才的铺垫总结的,先自己弄懂了再去阿里面试,不然就是去丢脸,被虐。希望对大家帮助,祝面试成功,有个更好的职业规划。一,阿里常见技术面1、微信红包怎么实现。2、海量数据分析。3、测试职位问的线程安全和非线程安全。4、HTTP2.0、thrift。5、面试电话沟通可能先让自我介绍。6、分布式事务一致性。7、ni
- 【项目实战】 容错机制与故障恢复:保障系统连续性的核心体系
本本本添哥
004-研效与DevOps运维工具链002-进阶开发能力分布式
在分布式系统中,硬件故障、网络波动、软件异常等问题难以避免。容错机制与故障恢复的核心目标是:通过主动检测故障、自动隔离风险、快速转移负载、重建数据一致性,最大限度减少故障对业务的影响,保障系统“持续可用”与“数据不丢失”。以下从核心机制、实现方式、典型案例等维度展开说明。一、故障检测:及时发现异常节点故障检测是容错的第一步,需通过多维度手段实时感知系统组件状态,确保故障被快速识别。1.健康检查与心
- 为了在未来的人工智能世界中取得成功,学生们必须学习人类写作的优点
睿邸管家
澳大利亚各地的学生在新学年开始使用铅笔、钢笔和键盘学习写字。在工作场所,机器也在学习写作,如此有效,几年之内,它们可能会写得比人类更好。有时它们已经做到了,就像Grammarly这样的应用程序所展示的那样。当然,人类现在的日常写作可能很快就会由具有人工智能(AI)的机器来完成。手机和电子邮件软件常用的预测文本是无数人每天都在使用的一种人工智能写作形式。据AI行业研究机构称,到2022年,人工智能及
- Redis + Caffeine 实现高效的两级缓存架构
周童學
Java缓存redis架构
Redis+Caffeine实现高效的两级缓存架构引言在现代高并发系统中,缓存是提升系统性能的关键组件之一。传统的单一缓存方案往往难以同时满足高性能和高可用性的需求。本文将介绍如何结合Redis和Caffeine构建一个高效的两级缓存系统,并通过三个版本的演进展示如何逐步优化代码结构。项目源代码:github地址、gitee地址两级缓存架构概述两级缓存通常由本地缓存(如Caffeine)和分布式缓
- Deepseek技术深化:驱动大数据时代颠覆性变革的未来引擎
荣华富贵8
springboot搜索引擎后端缓存redis
在大数据时代,信息爆炸和数据驱动的决策逐渐重塑各行各业。作为一项前沿技术,Deepseek正在引领新一轮技术革新,颠覆传统数据处理与分析方式。本文将从理论原理、应用场景和前沿代码实践三个层面,深入剖析Deepseek技术如何为大数据时代提供颠覆性变革的解决方案。一、技术背景与核心思想1.1大数据挑战与机遇在数据量呈指数级增长的背景下,传统数据处理方法面临数据存储、计算效率和信息提取精度的诸多挑战。
- 大数据之路:阿里巴巴大数据实践——大数据领域建模综述
为什么需要数据建模核心痛点数据冗余:不同业务重复存储相同数据(如用户基础信息),导致存储成本激增。计算资源浪费:未经聚合的明细数据直接参与计算(如全表扫描),消耗大量CPU/内存资源。数据一致性缺失:同一指标在不同业务线的口径差异(如“活跃用户”定义不同),引发决策冲突。开发效率低下:每次分析需重新编写复杂逻辑,无法复用已有模型。数据建模核心价值性能提升:分层设计(ODS→DWD→DWS→ADS)
- 分布式链路追踪系统架构设计:从理论到企业级实践
ma451152002
java分布式系统架构
分布式链路追踪系统架构设计:从理论到企业级实践本文深入探讨分布式链路追踪系统的架构设计原理、关键技术实现和企业级应用实践,为P7架构师提供完整的技术方案参考。目录引言:分布式链路追踪的重要性核心概念与技术原理系统架构设计数据模型与协议标准核心组件架构设计性能优化与扩展性设计企业级实施策略技术选型与对比分析监控与运维体系未来发展趋势P7架构师面试要点引言:分布式链路追踪的重要性微服务架构下的挑战在现
- 人工智能应用研究快讯 2021-11-30
峰谷皆平
[HTML]ArtificialIntelligenceforSkinCancerDetection:ScopingReviewATakiddin,JSchneider,YYang,AAbd-Alrazaq...JournalofMedicalInternet...,2021ABSTACT:Background:Skincanceristhemostcommoncancertypeaffectin
- 从振动信号到精准预警:AI 如何重塑工业设备健康管理?
缘华工业智维
人工智能计算机视觉边缘计算信息与通信
在智能制造浪潮席卷全球的当下,工业生产正经历着从传统模式向智能化、数字化转型的深刻变革。在这场变革中,AI驱动的振动分析技术犹如一颗璀璨新星,成为工业设备可靠运行的“健康卫士”。它通过在设备关键部位部署振动传感器,如同医生为患者听诊般实时采集设备运行时的振动信号,再借助强大的人工智能算法对这些“工业脉搏”进行深度解析,从而实现对工业设备从故障预警到寿命预测的全周期精准守护。一、AI振动分析:设备状
- AI 生成虚拟宠物:24 小时陪你聊天解闷
大力出奇迹985
人工智能宠物
本文围绕AI生成虚拟宠物展开,介绍这类依托人工智能技术诞生的虚拟伙伴,能实现24小时不间断陪伴聊天,为人们解闷。文中详细阐述其技术基础,包括自然语言处理、机器学习等;分析多样功能,如个性化互动、情绪回应等;探讨在独居人群、压力大者等不同群体中的应用场景,最后总结其为人们生活带来的积极影响及未来发展潜力,展现AI虚拟宠物在陪伴领域的独特价值。一、AI生成虚拟宠物的诞生背景与技术基石在快节奏的现代社会
- GPT-4 在 AIGC 中的微调技巧:让模型更懂你的需求
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络AIGCai
GPT-4在AIGC中的微调技巧:让模型更懂你的需求关键词:GPT-4、AIGC、模型微调、监督学习、指令优化、过拟合预防、个性化生成摘要:AIGC(人工智能生成内容)正在重塑内容创作行业,但通用的GPT-4模型可能无法精准匹配你的垂直需求——比如写电商爆款文案时总“跑题”,或生成技术文档时专业术语不够。本文将用“教小朋友学画画”的通俗类比,从微调的底层逻辑讲到实战技巧,带你掌握让GPT-4“更懂
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- 数据分析领域中AI人工智能的发展前景展望
AI大模型应用工坊
AI大模型开发实战数据分析人工智能数据挖掘ai
数据分析领域中AI人工智能的发展前景展望关键词:数据分析、人工智能、机器学习、深度学习、数据挖掘、预测分析、自动化摘要:本文深入探讨了人工智能在数据分析领域的发展现状和未来趋势。我们将从核心技术原理出发,分析AI如何改变传统数据分析范式,详细讲解机器学习算法在数据分析中的应用,并通过实际案例展示AI驱动的数据分析解决方案。文章还将探讨行业应用场景、工具生态以及未来发展面临的挑战和机遇,为数据分析师
- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- Spark SQL架构及高级用法
Aurora_NeAr
sparksql架构
SparkSQL架构概述架构核心组件API层(用户接口)输入方式:SQL查询;DataFrame/DatasetAPI。统一性:所有接口最终转换为逻辑计划树(LogicalPlan),进入优化流程。编译器层(Catalyst优化器)核心引擎:基于规则的优化器(Rule-BasedOptimizer,RBO)与成本优化器(Cost-BasedOptimizer,CBO)。处理流程:阶段输入输出关键动
- 大数据技术笔记—spring入门
卿卿老祖
篇一spring介绍spring.io官网快速开始Aop面向切面编程,可以任何位置,并且可以细致到方法上连接框架与框架Spring就是IOCAOP思想有效的组织中间层对象一般都是切入service层spring组成前后端分离已学方式,前后台未分离:Spring的远程通信:明日更新创建第一个spring项目来源:科多大数据
- 【三桥君】MCP中台,究竟如何实现多模型、多渠道、多环境的统一管控?如何以MCP为核心设计AI应用架构?
三桥君
《三桥君MCP落地方法论》《三桥君AI大模型落地方法论》#《三桥君AI产品方法论》人工智能AI产品经理MCPAPI三桥君系统架构llama
你好,我是✨三桥君✨本文介绍>>一、引言随着人工智能技术的快速发展,越来越多的企业开始引入大语言模型(LLM)以提升用户体验和运营效率。然而,如何高效、稳定地将这些AI能力落地到生产环境呢?传统的系统架构往往难以应对AI应用的高并发、低延迟和灵活扩展需求,因此,从整体架构角度设计AI应用架构显得尤为重要。本文三桥君将深入探讨以MCP为核心的AI应用架构,并分析多种部署方式的优劣势,为企业在AI落地
- 深入理解卷积神经网络(CNN)与循环神经网络(RNN)
CodeJourney.
cnnrnn人工智能
在当今的人工智能领域,神经网络无疑是最为璀璨的明珠之一。而卷积神经网络(ConvolutionalNeuralNetworks,CNN)和循环神经网络(RecurrentNeuralNetworks,RNN)作为神经网络家族中的重要成员,各自有着独特的架构和强大的功能,广泛应用于众多领域。本文将深入探讨这两种神经网络的原理、特点以及应用场景,为对深度学习感兴趣的读者提供全面的知识讲解。一、卷积神经
- 今年校招竞争真激烈
12_05
程序员满大街,都要找不到工作了。即使人工智能满大街,我也后悔当初没学机器学习,后悔当初没学Java。C++真难找工作。难道毕了业就失业吗?好担心!
- Redis 分布式锁深度解析:过期时间与自动续期机制
爱恨交织围巾
分布式事务redis分布式数据库微服务学习go
Redis分布式锁深度解析:过期时间与自动续期机制在分布式系统中,Redis分布式锁的可靠性很大程度上依赖于对锁生命周期的管理。上一篇文章我们探讨了分布式锁的基本原理,今天我们将聚焦于一个关键话题:如何通过合理设置过期时间和实现自动续期机制,来解决分布式锁中的死锁与锁提前释放问题。一、为什么过期时间是分布式锁的生命线?你的笔记中提到"服务挂掉时未删除锁可能导致死锁",这正是过期时间要解决的核心问题
- Gerapy爬虫管理框架深度解析:企业级分布式爬虫管控平台
Python×CATIA工业智造
爬虫分布式pythonpycharm
引言:爬虫工程化的必然选择随着企业数据采集需求指数级增长,传统单点爬虫管理模式面临三重困境:管理效率瓶颈:手动部署耗时占开发总时长的40%以上系统可靠性低:研究显示超过65%的爬虫故障源于部署或调度错误资源利用率差:平均爬虫服务器CPU利用率不足30%爬虫管理方案对比:┌───────────────┬─────────────┬───────────┬───────────┬──────────
- 如何运用深度学习打造高效AI人工智能系统
AI智能探索者
AIAgent智能体开发实战人工智能深度学习ai
如何运用深度学习打造高效AI人工智能系统关键词:深度学习、AI系统、神经网络、模型优化、实战开发摘要:本文将从深度学习的核心概念出发,结合生活实例和代码实战,系统讲解如何构建高效AI系统。我们会拆解数据准备、模型设计、训练优化、部署落地的全流程,揭秘“数据-模型-训练-推理”的协同机制,并通过具体案例演示从0到1开发AI系统的关键技巧,帮助开发者掌握打造高效AI系统的底层逻辑。背景介绍目的和范围在
- 2025最新系统 Git 教程(七)(完结)
嘿rasa
2025最新教程系列git
第4章分布式Git4.1分布式Git-分布式工作流程你现在拥有了一个远程Git版本库,能为所有开发者共享代码提供服务,在一个本地工作流程下,你也已经熟悉了基本Git命令。你现在可以学习如何利用Git提供的一些分布式工作流程了。这一章中,你将会学习如何作为贡献者或整合者,在一个分布式协作的环境中使用Git。你会学习为一个项目成功地贡献代码,并接触一些最佳实践方式,让你和项目的维护者能轻松地完成这个过
- 非欧空间计算加速:图神经网络与微分几何计算的GPU优化(流形数据的内存布局优化策略)
九章云极AladdinEdu
空间计算神经网络人工智能gpu算力算法java开发语言
一、非欧空间计算的革命性意义与核心挑战在三维形状分析、社交网络建模、分子动力学模拟等领域,非欧几里得空间数据(流形数据)的处理正推动人工智能技术向更复杂的几何结构迈进。传统欧式空间优化方法在处理流形数据时面临根本性局限:黎曼度量导致距离计算失效、局部坐标系动态变化引发内存访问模式混乱、曲率变化影响并行计算效率。本文提出基于分块流形存储(BlockedManifoldStorage,BMS)与层次化
- 大数据精准获客并实现高转化的核心思路和实现方法
2401_88470328
大数据精准获客数据分析数据挖掘大数据需求分析bigdata
大数据精准获客并实现高转化的核心思路和实现方法大数据精准获客并实现高转化的核心思路和实现方法在当今信息爆炸的时代,企业如何通过海量的数据精准获取潜在客户,并提高转化率,已经成为营销策略中的关键环节。大数据精准获客的核心思路在于数据驱动、多渠道触达以及优化转化路径,从而实现高效的市场推广和客户转化。数据驱动原理和机制数据驱动的核心在于通过分析用户行为数据,挖掘潜在客户的需求和喜好,从而制定更加精准的
- 一地鸡毛—一个中年男人的日常2021241
随止心语所自欲律
2021年8月31日,星期二,阴有小雨。早起5:30,跑步10公里。空气清新,烟雨朦胧,远山如黛,烟雾缭绕,宛若仙境。空气中湿气很大,朦胧细雨拍打在脸上,甚是舒服,跑步的人明显减少。早上开会,领导说起逐年大幅度下滑的工作业绩,越说越激动,说得脸红脖子粗。开完会又讨论了一下会议精神,心情也有波动,学习热情不高。心里还有一个大事,是今日大数据分析第1次考试,因自己前期没学,而且计算机编程方面没有任何基
- 分布式全局唯一ID生成:雪花算法 vs Redis Increment,怎么选?
雪花算法vsRedisIncrement:分布式全局唯一ID生成方案深度对比在分布式系统开发中,“全局唯一ID”是绕不开的核心问题。无论是分库分表的数据库设计、订单编号的唯一性保证,还是日志追踪的链路标识,都需要一套可靠的ID生成方案。今天我们就来聊聊两种主流方案——雪花算法(Snowflake)和RedisIncrement,并从原理、特性到适用场景,帮你理清如何选择。同时,我们还将对比其他常见
- Spring Security OAuth2.0在分布式系统中的安全实践
引言分布式系统架构下,安全认证与授权面临跨服务、高并发、多租户等挑战。SpringSecurity与OAuth2.0的结合为微服务安全提供了标准化解决方案。分布式系统中的安全挑战跨服务身份认证的复杂性令牌管理的可扩展性问题多租户场景下的权限隔离需求防止CSRF、XSS等常见攻击SpringSecurityOAuth2.0核心架构授权服务器设计@EnableAuthorizationServer配置
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo