- Flowable 高级扩展:自定义元素与性能优化实战
练习时长两年半的程序员小胡
Flowable流程引擎实战指南流程图flowableBPMN流程引擎java
在前五篇文章中,我们从基础概念、流程设计、API实战、SpringBoot集成,到外部系统协同,逐步构建了Flowable的应用体系。但企业级复杂场景中,原生功能往往难以满足定制化需求——比如需要特殊的审批规则网关、与决策引擎联动实现动态路由,或是在高并发场景下优化流程引擎性能。本文将聚焦Flowable的高级扩展能力,详解如何自定义流程元素、集成规则引擎,并掌握大型系统中的性能调优策略。一、自定
- Redis + Caffeine 实现高效的两级缓存架构
周童學
Java缓存redis架构
Redis+Caffeine实现高效的两级缓存架构引言在现代高并发系统中,缓存是提升系统性能的关键组件之一。传统的单一缓存方案往往难以同时满足高性能和高可用性的需求。本文将介绍如何结合Redis和Caffeine构建一个高效的两级缓存系统,并通过三个版本的演进展示如何逐步优化代码结构。项目源代码:github地址、gitee地址两级缓存架构概述两级缓存通常由本地缓存(如Caffeine)和分布式缓
- 【三桥君】MCP中台,究竟如何实现多模型、多渠道、多环境的统一管控?如何以MCP为核心设计AI应用架构?
三桥君
《三桥君MCP落地方法论》《三桥君AI大模型落地方法论》#《三桥君AI产品方法论》人工智能AI产品经理MCPAPI三桥君系统架构llama
你好,我是✨三桥君✨本文介绍>>一、引言随着人工智能技术的快速发展,越来越多的企业开始引入大语言模型(LLM)以提升用户体验和运营效率。然而,如何高效、稳定地将这些AI能力落地到生产环境呢?传统的系统架构往往难以应对AI应用的高并发、低延迟和灵活扩展需求,因此,从整体架构角度设计AI应用架构显得尤为重要。本文三桥君将深入探讨以MCP为核心的AI应用架构,并分析多种部署方式的优劣势,为企业在AI落地
- 深入剖析 boost::unique_lock<boost::mutex>
程序员乐逍遥
C++Boost库C/C++多线程编程专题C++boost线程锁
在高并发的C++程序中,线程安全是永恒的主题。而boost::unique_lock作为Boost.Thread库中的核心组件,为开发者提供了强大、灵活且异常安全的互斥量管理机制。它不仅是RAII(ResourceAcquisitionIsInitialization)设计模式的典范,更是实现复杂线程同步逻辑的基石。一、从lock_guard的说起在介绍unique_lock之前,我们先回顾其“简
- 每日面试题15:如何解决堆溢出?
℡余晖^
每日面试题python开发语言
在Java应用运行过程中,"java.lang.OutOfMemoryError:Javaheapspace"是最常见的错误之一。无论是高并发的电商大促场景,还是持续运行的后台服务,堆内存溢出都可能导致服务不可用、数据丢失,甚至引发系统崩溃。本文将结合实际排查经验,系统讲解堆溢出的底层逻辑、应急处理流程及长效预防策略。一、堆溢出的本质:内存分配的"收支失衡"Java堆是JVM管理的内存区域,用于存
- 构建高性能Web应用:深入Spring WebFlux
李多田
本文还有配套的精品资源,点击获取简介:SpringWebFlux是Spring框架的一部分,支持反应式编程模型,适合高并发和低延迟Web应用。它提供了非阻塞I/O和事件驱动模型,优化了多核处理器资源的使用。SpringWebFlux拥有两种编程模式,核心组件包括WebHandler,RouterFunction,WebFilter,和WebSession。它与高性能服务器集成,并提供反应式HTTP
- 零基础学习性能测试第八章:高并发-redis缓存架构介绍
试着
性能测试缓存学习redis性能测试零基础
目录一、Redis在高并发中的核心价值二、Redis核心架构模式▶1.缓存穿透防御架构▶2.热点数据多级缓存三、Redis集群高可用方案▶1.RedisCluster分片架构▶2.读写分离方案四、Redis性能压测实战▶1.基准测试工具▶2.关键性能指标五、典型瓶颈分析与优化案例1:缓存雪崩案例2:热Key阻塞六、电商秒杀实战架构七、必须掌握的进阶技巧八、学习路径与工具推荐以下是为零基础学习者设计
- Spring Security OAuth2.0在分布式系统中的安全实践
引言分布式系统架构下,安全认证与授权面临跨服务、高并发、多租户等挑战。SpringSecurity与OAuth2.0的结合为微服务安全提供了标准化解决方案。分布式系统中的安全挑战跨服务身份认证的复杂性令牌管理的可扩展性问题多租户场景下的权限隔离需求防止CSRF、XSS等常见攻击SpringSecurityOAuth2.0核心架构授权服务器设计@EnableAuthorizationServer配置
- 【Spring WebFlux】为什么 Spring 要拥抱响应式
会飞的架狗师
SpringWebFluxspringjava后端
在现代分布式系统中,响应式系统已成为应对高并发、低延迟需求的核心方案。但构建响应式系统并非易事——它需要框架级别的支持来解决异步处理、资源调度、背压控制等底层问题。作为Java生态中最具影响力的框架,Spring对响应式的支持并非偶然,而是技术演进的必然选择。本文将从响应式系统的构建挑战出发,剖析Spring拥抱响应式的底层逻辑。一、响应式系统的构建困境:现有方案的局限性响应式系统的核心诉求是在有
- 使用Spring Boot构建响应式应用
微赚淘客系统@聚娃科技
springboot后端java
使用SpringBoot构建响应式应用大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨如何利用SpringBoot构建响应式应用,以适应现代应用程序对高并发和低延迟的需求。一、什么是响应式应用?响应式应用是一种通过异步编程模型来处理并发请求和数据流的应用程序设计方式。它能够更有效地利用计算资源,提供更快的响应时间和更高
- Mybatisplus的雪花算法及代码生成器的使用
你我约定有三
算法dreamweaver
1.雪花算法1.1背景:雪花算法(Snowflake)的使用背景主要源于高并发分布式系统环境下对唯一ID生成的需求。这种需求在像Twitter这样的社交媒体平台上尤为突出,因为Twitter需要处理每秒上万条消息的请求,并且每条消息都必须分配一个唯一的ID。这些ID不仅需要全局唯一,以跨机器、跨时间区分,还需要保持一定的顺序性(尽管不要求连续),以方便客户端排序和后续的数据处理。1.2与自动递增的
- 零基础学习性能测试第六章:性能难点-Jmeter实现海量用户压测
目录一、海量压测核心挑战与解决思路二、分布式压测集群搭建(百倍性能提升)1.架构设计2.实战步骤三、百万级用户参数化方案1.Redis预生成测试数据2.JMeter分段读取(避免内存溢出)3.CSV分片策略四、高并发优化配置模板1.`jmeter.properties`关键修改2.线程组配置技巧五、结果收集与监控方案1.轻量级结果存储2.实时监控看板六、海量压测实战案例:双11级流量模拟测试目标:
- 短剧系统开发上线全流程攻略:从架构设计到性能优化
v_qutudy
短剧系统开发海外短剧
——基于微服务架构与AI推荐技术的实战指南一、引言:短剧系统的市场背景与技术挑战行业现状全球短剧市场规模已突破百亿美元,中国用户日均观看时长从2021年的18分钟增长至2023年的58分钟,呈现出爆发式增长。短剧系统的核心特点包括:内容碎片化:单集时长1-10分钟,剧情紧凑。互动性强:支持点赞、评论、付费解锁等社交功能。变现模式多元:广告、付费观看、虚拟商品等。技术挑战短剧系统需解决高并发、低延迟
- H800核心技术突破与行业应用实战
智能计算研究中心
其他
内容概要在人工智能技术持续迭代的背景下,H800芯片凭借自主架构优化与算力跃升,成为推动行业场景化落地的关键驱动力。本文将从技术路径、性能突破与行业应用三个维度,系统解析H800如何在高并发计算与低延时响应领域实现底层架构创新。首先聚焦其自主架构优化的核心技术路径,包括动态资源调度算法与异构计算单元的深度协同设计,揭示其在能效比与计算密度上的突破逻辑;进一步结合算力跃升的具体表现,探讨该芯片如何通
- Java高并发解决方案:线程池ThreadPoolExecutor详解
AI应用架构探索者
AI人工智能与大数据应用开发AI实战javapython开发语言ai
Java高并发解决方案:线程池ThreadPoolExecutor详解关键词:Java高并发、线程池、ThreadPoolExecutor、阻塞队列、拒绝策略、线程复用、任务调度摘要:在Java高并发场景中,线程池是解决线程频繁创建/销毁、资源浪费和线程管理混乱的“瑞士军刀”。本文将以“餐厅服务团队”为类比,用小学生都能听懂的语言,从线程池的核心参数、工作流程、实战配置到调优技巧,全面解析Thre
- 新一代数据库:融合多模智能,重塑数据价值
一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,正以前所未有的速度重塑着企业的应用形态。新业务场景层出不穷——从高并发的在线交易、实时精准的分析决策,到海量物联网设备监控、基于图关系的风控反欺诈,再到AI驱动的智能推荐与内容生成,应用场景的多样性与复杂性已突破传统数据库的能力边界。这对
- Python 4.0新特性解析:性能优化与语法升级
知识产权13937636601
计算机python性能优化开发语言
本文针对Python4.0的核心升级展开系统性分析,从性能优化与语法革新两个维度揭示其技术突破。首先解析新型解释器架构对运算效率的提升路径,其次探讨模式匹配、异步编程简化和类型系统强化等语法特性,最后结合机器学习与高并发场景验证新版本的实践价值。研究发现,Python4.0通过JIT编译器与内存管理重构实现3倍以上性能跃升,同时静态类型推导的完善显著提升大型项目维护效率,标志着Python从"胶水
- Kafka——两种集群搭建详解 k8s
Michaelwubo
kafka分布式
1、简介Kafka是一个能够支持高并发以及流式消息处理的消息中间件,并且Kafka天生就是支持集群的,今天就主要来介绍一下如何搭建Kafka集群。Kafka目前支持使用Zookeeper模式搭建集群以及KRaft模式(即无Zookeeper)模式这两种模式搭建集群,这两种模式各有各的好处,今天就来分别介绍一下这两种方式1.1、Kafka集群中的节点类型一个Kafka集群是由下列几种类型的节点构成的
- HAProxy 负载均衡指南
心上之秋
负载均衡运维
一、HAProxy简介HAProxy(HighAvailabilityProxy)是一款高性能、开源的负载均衡器和代理服务器。它以其高并发处理能力、灵活的配置选项和强大的功能而闻名,广泛应用于各种Web服务场景,如:负载均衡:将流量分配到多个后端服务器,提高系统可用性和性能。反向代理:隐藏真实服务器,提供安全防护、缓存内容等功能。SSL/TLS终止:处理HTTPS请求,提高网站安全性。Web性能优
- 第3章通用的服务可用性治理手段——3.6 降级策略
计小酱蟹不肉
读书笔记微服务降级系统设计场景题
在3.4节中,我们曾列举著名景区在节假日期间限制游客数量的例子来表述限流,而景区在节假日期间将不重要的、安全风险较大的或难以管理的游玩项目暂时关闭叫作“降级”,其目的是保障游客的游玩核心体验。与此类似,服务降级的目的是重点保障用户的核心体验和服务的可用性。在异常、高并发的情况下可以忽略非核心场景或换一种简单处理方式,以便释放资源给核心场景,保证核心场景的正常处理与高性能执行。服务降级的实施方案灵活
- 终面倒计时10分钟:候选人用`memory_profiler`定位Python内存泄漏
itAred
Python面试场景题PythonMemoryProfilingInterviewDebugging
场景设定:终面倒计时10分钟面试官:小兰,欢迎来到终面环节。在你前面的候选人已经展示了他们的项目经历和代码能力,但今天的终面,我们想考察你解决实际问题的能力。现在,假设你是一名资深后端工程师,负责维护一个高并发的在线服务。最近,生产环境的服务器内存占用持续升高,甚至出现了服务频繁挂掉的问题。我们需要你快速定位并解决这个问题。在接下来的10分钟内,我会给你一段简化的代码示例,并提供一个内存泄漏的场景
- Python爬虫实战:研究picloud相关技术
ylfhpy
爬虫项目实战python爬虫开发语言picloud
一、引言1.1研究背景与意义在数字化时代,网络数据已成为企业决策、学术研究和社会服务的重要资源。爬虫技术作为自动化获取网络信息的关键手段,在舆情监测、市场分析、学术研究等领域具有广泛应用。Python以其简洁的语法和丰富的爬虫库(如Requests、BeautifulSoup、Scrapy)成为爬虫开发的首选语言。然而,面对海量数据和高并发需求,本地爬虫系统往往面临性能瓶颈。picloud作为专业
- AI浪潮涌,数据库“融合智能”奏响产业新乐章
可涵不会debug
AI赋能人工智能数据库
一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,正以前所未有的速度重塑着企业的应用形态。新业务场景层出不穷——从高并发的在线交易、实时精准的分析决策,到海量物联网设备监控、基于图关系的风控反欺诈,再到AI驱动的智能推荐与内容生成,应用场景的多样性与复杂性已突破传统数据库的能力边界。这对
- 数据库融合进化:AI驱动下的数字化转型新纪元
颜颜yan_
前沿科技产品测评数据库人工智能
一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,正以前所未有的速度重塑着企业的应用形态。新业务场景层出不穷——从高并发的在线交易、实时精准的分析决策,到海量物联网设备监控、基于图关系的风控反欺诈,再到AI驱动的智能推荐与内容生成,应用场景的多样性与复杂性已突破传统数据库的能力边界。这对
- MySQL 监控与性能调优实战指南:从入门到精通
CarlowZJ
AI应用落地涉及的数据库mysql数据库监控与性能调优实战指南从入门到精通
目录一、MySQL监控的核心概念与体系架构(一)监控的重要性与目标(二)构建全面的监控指标体系(三)MySQL内置监控工具详解与实战(四)外部监控工具深度集成与应用二、性能调优策略:从基础到高级的全方位实战技术(一)配置参数优化:挖掘MySQL内置潜力(二)SQL优化:从源头解决性能瓶颈(三)架构调优:硬件资源的合理调配(四)自动化调优工具:迈向智能化运维三、实战案例:高并发电商秒杀场景下的监控与
- 融合与智能:AI时代数据库的演进新范式与产业格局重塑
意疏
测评人工智能数据库
一、场景重塑产业格局:数据库“融合进化”AI浪潮奔涌而至,数字产业格局加速重构。云计算、移动互联、万物互联(IoT)、人工智能(AI)等技术的深度融合与快速落地,正以前所未有的速度重塑着企业的应用形态。新业务场景层出不穷——从高并发的在线交易、实时精准的分析决策,到海量物联网设备监控、基于图关系的风控反欺诈,再到AI驱动的智能推荐与内容生成,应用场景的多样性与复杂性已突破传统数据库的能力边界。这对
- 耳根圆通:“高并发架构”设计思想
——从《楞严经》看顶级修行者的系统架构哲学一、需求背景:无上道的“性能瓶颈”在《楞严经》中,观世音菩萨向佛陀汇报其突破性成果:通过耳根圆通法门修证无上道,并实现四种“无作妙德”。这像极了一位架构师通过技术创新,解决系统性能瓶颈后获得四大核心能力:graphLRA[耳根圆通架构]-->B[四大能力]B-->B1[多模态交互系统]B-->B2[全协议兼容通信]B-->B3[高用户粘性设计]B-->B4
- 零基础学习性能测试第五章:JVM性能分析与调优-多线程检测与瓶颈分析
试着
性能测试学习jvm零基础性能测试
目录**一、多线程性能问题典型症状****二、核心分析工具链****1.基础诊断命令****2.高级可视化工具****三、多线程瓶颈四步分析法****步骤1:定位高负载线程****步骤2:分析线程阻塞原因****步骤3:锁竞争分析****步骤4:并发数据结构分析****四、高频瓶颈场景与调优方案****场景1:锁竞争激烈****场景2:线程池配置不当****场景3:ThreadLocal内存泄漏*
- 线程池公用变量
我有一只肥螳螂
JAVAjava
一般情况下,我们定义线程变量是使用ThreadLocalprivatefinalThreadLocalLOCAL_DATA=newThreadLocalLOCAL_DATA=newTransmittableThreadLocal{xxxx});}正确示例for(PatrolInspectPlanitem:dataList){//使用TtlRunnable包装任务,确保变量传递orderThread
- JAVA知识点(六):性能调优与线上问题排查
程序员码龙
Java面试java
文章目录服务间通信超时问题怎么解决?高并发线程安全问题如何排查慢SQL问题如何排查频繁FullGC问题如何排查文件导入导出导致内存溢出如何排查线上大规模故障时如何处理与恢复线上大量错误日志如何排查线上偶发性问题如何处理和跟踪线上问题的排查思路线上系统接口响应很慢如何排查线上系统突然响应缓慢如何排查CPU飙高问题如何排查Java进程突然挂了如何排查Java死锁问题如何排查MySQL数据库连接池爆满如
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟