- Deepseek技术深化:驱动大数据时代颠覆性变革的未来引擎
荣华富贵8
springboot搜索引擎后端缓存redis
在大数据时代,信息爆炸和数据驱动的决策逐渐重塑各行各业。作为一项前沿技术,Deepseek正在引领新一轮技术革新,颠覆传统数据处理与分析方式。本文将从理论原理、应用场景和前沿代码实践三个层面,深入剖析Deepseek技术如何为大数据时代提供颠覆性变革的解决方案。一、技术背景与核心思想1.1大数据挑战与机遇在数据量呈指数级增长的背景下,传统数据处理方法面临数据存储、计算效率和信息提取精度的诸多挑战。
- Anaconda 和 Miniconda:功能详解与选择建议
古月฿
python入门pythonconda
Anaconda和Miniconda详细介绍一、Anaconda的详细介绍1.什么是Anaconda?Anaconda是一个开源的包管理和环境管理工具,在数据科学、机器学习以及科学计算领域发挥着关键作用。它以Python和R语言为基础,为用户精心准备了大量预装库和工具,极大地缩短了搭建数据科学环境的时间。对于那些想要快速开展数据分析、模型训练等工作的人员来说,Anaconda就像是一个一站式的“数
- 大数据之路:阿里巴巴大数据实践——大数据领域建模综述
为什么需要数据建模核心痛点数据冗余:不同业务重复存储相同数据(如用户基础信息),导致存储成本激增。计算资源浪费:未经聚合的明细数据直接参与计算(如全表扫描),消耗大量CPU/内存资源。数据一致性缺失:同一指标在不同业务线的口径差异(如“活跃用户”定义不同),引发决策冲突。开发效率低下:每次分析需重新编写复杂逻辑,无法复用已有模型。数据建模核心价值性能提升:分层设计(ODS→DWD→DWS→ADS)
- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- AI 生成虚拟宠物:24 小时陪你聊天解闷
大力出奇迹985
人工智能宠物
本文围绕AI生成虚拟宠物展开,介绍这类依托人工智能技术诞生的虚拟伙伴,能实现24小时不间断陪伴聊天,为人们解闷。文中详细阐述其技术基础,包括自然语言处理、机器学习等;分析多样功能,如个性化互动、情绪回应等;探讨在独居人群、压力大者等不同群体中的应用场景,最后总结其为人们生活带来的积极影响及未来发展潜力,展现AI虚拟宠物在陪伴领域的独特价值。一、AI生成虚拟宠物的诞生背景与技术基石在快节奏的现代社会
- 基于Python的AI健康助手:开发与部署全攻略
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构python人工智能开发语言ai
基于Python的AI健康助手:开发与部署全攻略关键词:Python、AI健康助手、机器学习、自然语言处理、Flask、部署、健康管理摘要:本文将详细介绍如何使用Python开发一个AI健康助手,从需求分析、技术选型到核心功能实现,再到最终部署上线的完整过程。我们将使用自然语言处理技术理解用户健康咨询,通过机器学习模型提供个性化建议,并展示如何用Flask框架构建Web应用接口。文章包含大量实际代
- 数据分析领域中AI人工智能的发展前景展望
AI大模型应用工坊
AI大模型开发实战数据分析人工智能数据挖掘ai
数据分析领域中AI人工智能的发展前景展望关键词:数据分析、人工智能、机器学习、深度学习、数据挖掘、预测分析、自动化摘要:本文深入探讨了人工智能在数据分析领域的发展现状和未来趋势。我们将从核心技术原理出发,分析AI如何改变传统数据分析范式,详细讲解机器学习算法在数据分析中的应用,并通过实际案例展示AI驱动的数据分析解决方案。文章还将探讨行业应用场景、工具生态以及未来发展面临的挑战和机遇,为数据分析师
- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- 数据中台中的数据科学工作台:Jupyter集成方案
AI大数据智能洞察
大数据与AI人工智能jupyter信息可视化ideai
数据中台中的数据科学工作台:Jupyter集成方案关键词:数据中台、数据科学工作台、JupyterNotebook、数据科学、机器学习、数据可视化、协作开发摘要:本文深入探讨了在数据中台架构中集成JupyterNotebook作为数据科学工作台的完整解决方案。我们将从数据中台的基本概念出发,详细分析Jupyter在数据科学工作流中的核心作用,介绍多种集成方案和技术实现细节,并通过实际案例展示如何构
- 大数据技术笔记—spring入门
卿卿老祖
篇一spring介绍spring.io官网快速开始Aop面向切面编程,可以任何位置,并且可以细致到方法上连接框架与框架Spring就是IOCAOP思想有效的组织中间层对象一般都是切入service层spring组成前后端分离已学方式,前后台未分离:Spring的远程通信:明日更新创建第一个spring项目来源:科多大数据
- 2018年中南大学中英翻译
某翁
参考:20180827235856533.jpg【1】机器学习理论表明,机器学习算法能从有限个训练集样本上得到较好的泛化【1】Machinelearningtheoryshowsthatmachinelearningalgorithmcangeneralizewellfromfinitetrainingsetsampleslimited有限的infinite无限的【2】这似乎违背了一些基本的逻辑准
- 今年校招竞争真激烈
12_05
程序员满大街,都要找不到工作了。即使人工智能满大街,我也后悔当初没学机器学习,后悔当初没学Java。C++真难找工作。难道毕了业就失业吗?好担心!
- 基于随机森林的白酒风味智能分类系统:从数据到洞察的完整实践
笙囧同学
python
作者:笙囧同学|中科院计算机大模型方向硕士|全栈开发爱好者座右铭:偷懒是人生进步的阶梯联系方式:
[email protected]各大平台账号/公众号:笙囧同学前言大家好,我是笙囧同学!今天给大家分享一个超级有趣且技术含量爆表的项目——白酒风味智能分类系统。作为一个既爱技术又爱美酒的程序员,我花了大量时间研究如何用机器学习的方法来"品酒",让AI帮我们识别白酒的风味特征。这个项目融合了机器学习、数
- 大数据精准获客并实现高转化的核心思路和实现方法
2401_88470328
大数据精准获客数据分析数据挖掘大数据需求分析bigdata
大数据精准获客并实现高转化的核心思路和实现方法大数据精准获客并实现高转化的核心思路和实现方法在当今信息爆炸的时代,企业如何通过海量的数据精准获取潜在客户,并提高转化率,已经成为营销策略中的关键环节。大数据精准获客的核心思路在于数据驱动、多渠道触达以及优化转化路径,从而实现高效的市场推广和客户转化。数据驱动原理和机制数据驱动的核心在于通过分析用户行为数据,挖掘潜在客户的需求和喜好,从而制定更加精准的
- 一地鸡毛—一个中年男人的日常2021241
随止心语所自欲律
2021年8月31日,星期二,阴有小雨。早起5:30,跑步10公里。空气清新,烟雨朦胧,远山如黛,烟雾缭绕,宛若仙境。空气中湿气很大,朦胧细雨拍打在脸上,甚是舒服,跑步的人明显减少。早上开会,领导说起逐年大幅度下滑的工作业绩,越说越激动,说得脸红脖子粗。开完会又讨论了一下会议精神,心情也有波动,学习热情不高。心里还有一个大事,是今日大数据分析第1次考试,因自己前期没学,而且计算机编程方面没有任何基
- Spring AI与机器学习:智能应用开发新范式
tmjpz04412
人工智能spring机器学习
SpringAI与机器学习的整合SpringAI是一个基于Spring生态的AI开发框架,旨在简化智能应用的开发流程。通过SpringAI,开发者可以快速集成机器学习模型,构建高效的智能应用。SpringAI支持多种机器学习库和框架,如TensorFlow、PyTorch和Scikit-learn,提供统一的API接口。SpringAI的核心优势在于其模块化设计和自动化配置。开发者无需关心复杂的依
- Hive详解
一:Hive的历史价值1,Hive是Hadoop上的KillerApplication,Hive是Hadoop上的数据仓库,Hive同时兼具有数据仓库中的存储引擎和查询引擎的作用;而SparkSQL是一个更加出色和高级的查询引擎,所以在现在企业级应用中SparkSQL+Hive成为了业界使用大数据最为高效和流行的趋势。2,Hive是Facebook的推出,主要是为了让不动Java代码编程的人员也能
- 智慧施工:AI技术赋能建筑安全监测新纪元
开发AI智能应用,就下载InsCodeAIIDE,一键接入DeepSeek-R1满血版大模型!智慧施工:AI技术赋能建筑安全监测新纪元在现代建筑行业中,施工安全始终是核心关注点之一。随着科技的飞速发展,人工智能(AI)和大数据分析逐渐成为提升施工安全的重要工具。本文将探讨如何利用智能化软件和大模型API来构建高效的施工安全监测系统,并介绍一款强大的开发工具——InsCodeAIIDE的应用场景及其
- 智慧工地系统:建筑行业数字化变革的引领者
青云智慧园区
java
在建筑行业积极迈向数字化转型的浪潮中,智慧工地系统凭借“数据驱动、智能管控、协同增效”的核心优势,深度融合物联网、大数据、人工智能等前沿技术,构建起覆盖工程项目全生命周期的精细化管理体系。以下将从系统架构、核心功能模块、应用价值以及未来展望等方面,全方位剖析智慧工地系统如何实现施工全过程的智能化、高效化管理。一、系统架构:打造一体化协同管理平台智慧工地系统采用先进的分层架构设计,以底层的数据采集层
- Hive与Hudi集成:增量大数据处理方案
AI大数据智能洞察
大数据与AI人工智能大数据AI应用hivehadoop数据仓库ai
Hive与Hudi集成:增量大数据处理方案关键词:Hive、Hudi、增量大数据处理、数据集成、数据湖摘要:本文主要探讨了Hive与Hudi集成的增量大数据处理方案。我们将深入了解Hive和Hudi的核心概念,剖析它们之间的关系,详细阐述集成的算法原理与操作步骤,通过实际项目案例展示如何进行开发环境搭建、代码实现与解读。同时,会介绍该集成方案的实际应用场景、相关工具和资源,探讨未来发展趋势与挑战。
- 获取三网实时访客---无忧获客大数据
无牛_abc3
很多传统行业的公司与企业对于运营商大数据的理解还是很基础的,大多数都是在买资源程度的认识。一些敢于尝试运营商大数据获客的传统企业自然会受益颇多。运营商大数据所提供的获客服务也非常简单,就是将自身的用户数据资源、针对不同的企业去制定有个性化需求的获客标准,运营商大数据根据不同的企业,和行业去进行精准客户的部署和分配,让相关合作的企业通过运营商提供的CRM平台进行一个有效的触达。运营商大数据已经在全国
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- 物联网与数字孪生:深度协同驱动智能未来 —— 专业规划分析
boyedu
物联网域名物联网区块链
一、定义与核心技术架构1.1物联网(IoT)的技术本质与架构定义:通过信息传感设备将物理对象与互联网连接,实现智能化识别、定位、跟踪和管理的网络。四层架构:感知层:传感器、RFID等设备采集物理数据(如温度、压力)。网络层:通过Wi-Fi、5G等通信技术传输数据,确保实时性与稳定性。平台层:云计算/边缘计算平台处理数据(如AWSIoT、AzureIoT)。应用层:提供终端服务(如智能家居、工业监控
- Python 4.0新特性解析:性能优化与语法升级
知识产权13937636601
计算机python性能优化开发语言
本文针对Python4.0的核心升级展开系统性分析,从性能优化与语法革新两个维度揭示其技术突破。首先解析新型解释器架构对运算效率的提升路径,其次探讨模式匹配、异步编程简化和类型系统强化等语法特性,最后结合机器学习与高并发场景验证新版本的实践价值。研究发现,Python4.0通过JIT编译器与内存管理重构实现3倍以上性能跃升,同时静态类型推导的完善显著提升大型项目维护效率,标志着Python从"胶水
- DeepSeek在大数据领域正掀起一场深刻的变革
智海观潮
AI大数据deepseekAI
随着人工智能技术的飞速发展,DeepSeek作为一款行业领先的开源大模型,正在大数据领域掀起一场深刻的变革。其强大的数据处理和分析能力,为各行业带来了新的机遇和变革,推动数据与业务的深度融合。以下是DeepSeek在大数据领域的一些典型的潜在应用:1.加速数据处理与分析流程在传统的大数据应用中,数据收集、预处理和分析往往是一个繁琐且耗时的工程。DeepSeek凭借其高效的算法和强大的计算能力,极大
- Python,C++,go语言开发社会犯罪人群回归社会跟踪与辅助管理APP
Geeker-2025
pythonc++golang
开发一款用于**社会犯罪人群回归社会跟踪与辅助管理**的App,结合Python、C++和Go语言的优势,可以实现高效的数据处理、实时的跟踪监控以及用户友好的前端界面。以下是一个详细的开发方案,涵盖技术选型、功能模块、开发步骤等内容。##技术选型###后端(Python+Go)-**编程语言**:-**Python**:用于数据处理、机器学习(如风险评估、行为预测)、脚本编写等。-**Go**:用
- IoTDB智能分析节点AINode:时序数据分析的新引擎
时序数据说
iotdb数据分析数据挖掘时序数据库数据库大数据ai
在大数据与物联网的驱动下,时序数据处理需求激增,如何高效存储、管理并实时分析海量时序数据成为技术挑战。作为专为时序数据设计的数据库,IoTDB通过引入智能分析节点(AINode),将机器学习能力原生集成到数据库中,实现了“数据存储-分析-决策”的一体化闭环。本文将深入解析AINode的核心功能、技术优势及实际应用场景。AINode:IoTDB的智能分析引擎AINode是IoTDB推出的第三种内生节
- 【免费下载】 探索PlantVillage-Dataset:深度学习在植物病害检测中的革命性突破
探索PlantVillage-Dataset:深度学习在植物病害检测中的革命性突破在这个数字化时代,人工智能正逐步改变我们的生活,其中深度学习在农业领域的应用尤其引人注目。PlantVillage-Dataset是一个开放源代码的项目,它提供了一个庞大的植物病害识别数据集,旨在帮助开发人员和研究者利用机器学习技术改善农作物健康状况的监测。本文将深入探讨该项目的技术细节、应用价值及其独特之处。项目简
- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- Python 的 GIL 时代即将终结,迈向真正的多线程时代
技术狂潮AI
Python开发实战AI编程实战AI应用实战开发语言GILPython
Python功能强大、灵活且对程序员友好,广泛应用于从Web开发到机器学习的各个领域。根据引用次数最多的两项指标,Python甚至超越了Java和C等语言,成为最流行的编程语言。经过多年的流行,Python似乎势不可挡。但Python作为一种编程语言的未来发展至少面临一个重大障碍。它被称为GIL,即全局解释器锁,几十年来,Python开发人员一直试图将其从Python的默认实现中删除。虽然GIL在
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D