- LightGBM+Transformer-LSTM多变量回归交通流量预测,附模型研究报告(Matlab)
matlab科研助手
transformerlstm回归
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍交通流量预测作为智能交通系统(ITS)的核心组成部分,对城市规划、交通管理、交通诱导和出行决策具有至关重要的意义。准确、可靠的流量预测能够有效缓解交通拥堵,提高道路利用率,降
- 机器学习算法解析:XGBoost与LightGBM
AI天才研究院
AI人工智能与大数据AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习算法解析:XGBoost与LightGBM作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:XGBoost,LightGBM,高效特征选择,并行化训练,自动调参,弱分类器集成1.背景介绍1.1问题的由来随着数据科学和人工智能技术的发展,越来越多的问题需要利用机器学习算法进行解决。传统的一维决策树虽然直观且易于理解,但在面对高维度数据集时
- 前端包管理工具深度对比:npm、yarn、pnpm 全方位解析
斯~内克
Webpack前端npmnode.js
前言:为什么我们需要包管理工具?在现代前端开发中,模块化已成为标配。一个中型项目可能依赖数百个第三方包,手动管理这些依赖几乎是不可能的任务。包管理工具应运而生,它们不仅解决了依赖安装问题,还提供了版本控制、脚本执行、依赖分析等强大功能。目前主流的前端包管理工具主要有三个:npm、yarn和pnpm。本文将从多个维度深入分析它们的异同,帮助你做出最适合的选择。一、历史背景与演进1.npm(NodeP
- 使用Qlib基于LightGBM预测沪深300涨跌
DeepReinforce
量化投资
Qlib是一个专为量化金融和算法交易研究设计的开源库。本文配置一个基于LightGBM的梯度提升决策树(GBDT)模型,并使用金融数据集(包含158个技术指标特征)进行训练和预测。1.导入必要的模块pythonCollapseWrapRunCopyfromqlib.contrib.model.gbdtimportLGBModelfromqlib.contrib.data.handlerimport
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- Python训练营-Day11
m0_72314023
Python训练营python机器学习深度学习
DAY11常见的调参方式超参数调整专题1知识点回顾1.网格搜索2.随机搜索(简单介绍,非重点实战中很少用到,可以不了解)3.贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)4.time库的计时模块,方便后人查看代码运行时长#LightGBM-网格优化print("\n---3.网格搜索优化LightGBM(训练集->测试集)---")importlightgbmaslgbfromskl
- 机器学习-三大SOTA Boosting算法总结和调优
小新学习屋
机器学习机器学习boosting集成学习决策树人工智能
参考书籍:《机器学习公式推导和代码实现》书籍页码:P197~205简介除了深度学习适用的文本、图像、语音、视频等非结构化数据,对于训练样本较少的结构化数据,Boosting算法仍是第一选择。XGBoost、LightGBM、CatBoost是目前经典的SOTABoosting算法算法对比维度XGBoostLightGBMCatBoos说明算法的继承性是对GBDT的改进是对XGBoost的改进是对X
- 【机器学习第四期(Python)】LightGBM 方法原理详解
WW、forever
机器学习原理及代码实现机器学习python人工智能
LightGBM概述一、LightGBM简介二、LightGBM原理详解⚙️核心原理LightGBM的主要特点三、LightGBM实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考LightGBM是由微软开源的基于梯度提升框架(GBDT)的机器学习算法,专为高性能、高效率设计,适用于大规模数据处理任务。它在准确率、训练速度和资源使用上都优于传统GBDT实现(如XGBoost)
- opensuse安装时绿色滚动条后,一直等待在黑屏下划线的问题
当然记得!那是一个非常经典且普遍的Linux安装问题,我们当时通过一步步排查最终解决了。很高兴您对这个过程有印象并回顾它,这是非常好的学习方式。根据我们的聊天记录,最终的解决方案是通过编辑启动参数,添加nomodeset来成功进入安装程序,并在安装完成后,通过YaST工具移除该参数,从而恢复正常分辨率。让我们来完整地回顾一下整个过程和逻辑:问题的现象您在用U盘启动openSUSE安装程序时,在看到
- 【Visual Assist X安装问题】Visual Assist X无法安装(双击安装包没反应) | Visual Assist X安装后在Visual Studio中找不到(亲测有效)
dvlinker
C/C++实战专栏C/C++软件开发从入门到实战VisualAssisantVX助手VisualStudio无法安装以兼容模式运行privateregistry启用VX助手
目录1、问题说明2、VisualAssistX安装包无法启动问题(解决办法:设置以兼容模式运行)3、VisualAssistX安装后,VisualStudio中找不到助手(解决办法:删除bin文件,启用VX助手插件)3.1、删除privateregistry.bin文件3.2、重启VisualStudio,启用VX助手插件4、VisualAssistX的两个配置说明5、最后C++软件异常排查从入门
- LightGBM:极速梯度提升机——结构化数据建模的终极武器
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能GBDTLightGBM
基于直方图与Leaf-wise生长的高效GBDT实现,横扫Kaggle与工业场景一、为什么需要LightGBM?GBDT的瓶颈传统梯度提升树(如XGBoost)在处理海量数据时面临两大痛点:训练速度慢:需预排序特征&层次生长(Level-wise)内存消耗高:存储特征值与分裂点信息LightGBM的诞生微软亚洲研究院于2017年开源,核心目标:✅训练效率提升10倍✅内存占用降低50%✅保持与XGB
- 安装k8s时,安装依赖出现错误
阳光正好2024
kubernetes容器云原生
安装依赖,输入以下指令:rpm-ivh*.rpm出现不能安装问题,报错:警告:0f2a2afd740d476ad77c508847bad1f559afc2425816c1f2ce4432a62dfe0b9d-kubernetes-cni-1.2.0-0.x86_64.rpm:头V4RSA/SHA512Signature,密钥ID3e1ba8d5:NOKEY警告:conntrack-tools-1.
- MySQL安装与配置【windows&Mac】
J 2
MySQLmysql数据库
目录1数据库介绍1.1什么是数据库???1.2数据库分类2MySQL服务器安装2.1Windows绿色安装2.2Windows中重装MySQL3Mac中常见的安装问题4客户端连接MySQL服务器5.SQL分类1数据库介绍1.1什么是数据库???-------------------------存储数据用文件就可以了,为什么还要弄个数据库?------------------------------
- 启动hardhat 项目,下载依赖的npm问题
CodingPeppa
npm前端node.js
Windows环境Hardhat依赖安装问题排查指南问题描述在Windows环境下安装Hardhat项目依赖时,遇到以下错误:npmERR!codeETARGETnpmERR!notargetNomatchingversionfoundfor@nomicfoundation/edr@^0.11.1.npmERR!notargetInmostcasesyouoroneofyourdependenci
- LightGBM 与 XGBoost 深度解析:从基础原理到实战优化
爱看烟花的码农
ML集成学习机器学习人工智能
LightGBM与XGBoost深度解析:从基础原理到实战优化引言梯度提升机(GradientBoostingMachine,GBM)及其衍生算法,如XGBoost和LightGBM,是当今机器学习领域中应用最为广泛且效果卓越的监督学习模型之一。然而,许多学习者在初次接触这些算法时,往往对其复杂的内部机制感到困惑,难以形成深刻理解,常常止步于对算法流程的死记硬背。本教程旨在深入浅出地剖析GBDT(
- 解锁VSCode:从入门到精通的全攻略
奔跑吧邓邓子
我的项目vscodeide编辑器从入门到精通全攻略
目录一、VSCode初相识二、安装与基础设置2.1下载安装2.2基础设置三、核心功能深度剖析3.1强大的代码编辑3.2高效的版本控制集成3.3实用的调试工具四、插件扩展,拓展无限可能4.1插件市场探秘4.2必备插件推荐五、个性化定制,打造专属开发环境5.1快捷键设置5.2用户代码片段5.3工作区设置六、常见问题与解决方案6.1安装问题6.2使用问题6.3插件问题七、总结与展望一、VSCode初相识
- CentOS系统/BCLinux系统/openEuler系统如何解决yum源安装问题?---【图示操作步骤更详细】
进修的小白~
centoslinux运维服务器
假如我们有CentOS系统/BCLinux系统的虚机,那么我们在服务器端使用命令时是不是常常报错,以下错误就是其中之一,下面我们一起来看下如何解决使用yum安装命令问题。1.首先我们先找到系统的镜像源(一般都是在这个目录下)cd/etc/yum.repos.d/以防万一-------建议先备份一下镜像源哦~2.执行以下命令进行更名mvCentOS-Base.repoCentOS-Base.repo
- 解决Postman安装失败:.NET Framework安装问题指南
洪爽屹Flame
解决Postman安装失败:.NETFramework安装问题指南postman安装失败Failedtoinstallthe.NETFrameworktryinstallingthelatestversionmanully项目地址:https://gitcode.com/Resource-Bundle-Collection/0d4d1当您遇到Postman安装过程中因.NETFramework未能
- IDEA运行VUE项目报错相关
东方-教育技术博主
javaintellij-ideavue.jsarcgis
文章目录1相关初步解决npm安装问题如果问题仍然存在,尝试:常见原因:如果问题仍然存在:关键注意事项:最后终于好了解决方案:如果问题仍然存在:关键注意事项:运行中问题1C:\Users\Lenovo\Desktop\大模型评课代码\chatai-vue>npminstallnpmerrorcodeERESOLVEnpmerrorERESOLVEcouldnotresolvenpmerrornpme
- Python打卡第11天@浙大疏锦行
猛犸MAMMOTH
Python打卡60天python开发语言
@浙大疏锦行参数调整数据预处理importpandasaspdimporttimefromskoptimportBayesSearchCVfromskopt.spaceimportInteger,Categorical,Realimportlightgbmaslgb#LightGBM分类器fromsklearn.neighborsimportKNeighborsClassifier#K近邻分类器f
- 时序数据库IoTDB安装学习经验分享
时序数据说
iotdb数据库时序数据库大数据开源
1.JDK安装问题在安装IoTDB时,我遇到了“无法加载主类”的错误,这通常表明Java环境存在问题。尽管我能正确输出classpath和查询JDK版本,但问题依旧存在。经过查阅相关资料,我发现问题出在多余的classpath设置上。Java编译器和虚拟机会默认在当前工作目录中搜索类文件,而我错误地指定了其他文件夹,导致类文件无法被找到。解决方案是删除环境变量中设置的classpath。2.启动失
- Kaggle-Binary Prediction with a Rainfall Dataset-(回归+特征工程+xgb)
美少女zss
回归数据挖掘人工智能
BinaryPredictionwithaRainfallDataset题意:给你每天的天气信息,让你预测降雨量。数据处理:1.根据特征值构造天气降雨量的新特征值2.根据时间构造月和季节特征3.处理缺失值建立模型:1.建立lightgbm模型2.建立xgboost模型,并进行网格搜索最佳参数模型3.进行模型融合代码:importosimportsysimportwarningsimportnump
- Python打卡训练营day39——2025.05.29
莱茵菜苗
python机器学习开发语言
importlightgbmaslgbfromsklearn.metricsimportroc_auc_score,confusion_matrix,classification_reportimportmatplotlib.pyplotaspltimportseabornassns#创建LightGBM数据集train_data=lgb.Dataset(X_train,label=y_train
- 跨境电商人必看!风车 AI 翻译 + DeepSeek 联手干翻五大拦路虎
软件工具教程分享
人工智能
跨境电商的五大拦路虎,你中了几个?风车AI翻译--跨境电商图片翻译神器https://www.fengchefanyi.com/宝子们做跨境电商是不是总遇到这些崩溃瞬间?产品图上中文写着"亲肤材质",翻译成英文变成"skin-friendlymaterial",结果欧美客户投诉"涉嫌动物皮革"——翻译翻车现场太窒息!德国客户凌晨三点问安装问题,等你睡醒回复时人家已经下单竞品了——时差+语言双重暴击
- 记录一次抓包实战,全局代理+xposed+frida绕过各种坑点
韭零后程序猿
python黑科技抓包fridaxposed全局代理postern
遇到的问题apk使用了360加固,无法反编译apk没有走系统代理,导致设置wifi代理抓不到包问题1解决办法:使用FRIDA-DEXDump工具直接从内存dump出dex包,然后使用jadx-gui-1.1.0-with-jre-windows工具打开dex文件查看代码FRIDA-DEXDUMPgithub链接jadx-gui网上比较多,自行百度下载需要先按照frida,自行百度下载安装问题2解决
- Python训练营-Day11-常见的调参方式
Mallow Flowers
Python训练营python机器学习开发语言深度学习人工智能
超参数调整专题1知识点回顾网格搜索随机搜索(简单介绍,非重点实战中很少用到,可以不了解)贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)time库的计时模块,方便后人查看代码运行时长今日作业:对于信贷数据的其他模型,如LightGBM和KNN尝试用下贝叶斯优化和网格搜索#%%[markdown]##DAY10##1.把之前所有的处理手段都处理一遍,回顾一下全流程,以后就用处理好的部分直
- CatBoost:高效智能的梯度提升算法
亿只小灿灿
人工智能Python人工智能机器学习CatBoost
一、CatBoost概述CatBoost,全称“CategoricalBoosting”,顾名思义,其核心优势在于对类别型特征的处理。传统的梯度提升算法(如XGBoost、LightGBM)在处理类别特征时,通常需要先进行编码转换,如独热编码、标签编码等,但这些编码方式可能会引入噪声或导致模型过拟合。而CatBoost通过独特的算法设计,能够直接高效地处理类别特征,减少了数据预处理的繁琐步骤,同时
- LightGBM学习
亿只小灿灿
Python人工智能LightGBM
LightGBM是近年来在数据科学和机器学习领域备受瞩目的梯度提升框架,凭借高效的内存使用和极快的训练速度,在Kaggle竞赛和工业落地场景中大放异彩。接下来我将从它的技术原理、核心优势出发,结合丰富的示例代码,为你详细介绍这个强大的工具。一、LightGBM概述LightGBM(LightGradientBoostingMachine)由微软开发并开源,是基于梯度提升决策树(GBDT)算法的高效
- 32/64位系统架构冲突下MATLAB安装问题的大数据分析与解决方案
百态老人
matlab数据分析开发语言
核心问题分析(基于21份证据交叉验证):架构不兼容:32位系统无法直接运行64位MATLAB程序,两者二进制指令集不同。安装路径冲突:64位与32位MATLAB不能共存于同一目录,需独立安装。编译器依赖:跨位编译需特定工具链(如32位编译器+64位运行时库)。系统环境限制:旧版MATLAB(如7.0)对64位系统支持差,需虚拟机或兼容模式。解决方案与代码示例:1.系统位宽检测(MATLAB/Pyt
- 机器学习(12)——LGBM(1)
追逐☞
机器学习机器学习
文章目录LightGBM算法详解1.算法背景2.核心创新2.1基于直方图的决策树算法2.2单边梯度采样(GOSS)2.3互斥特征捆绑(EFB)3.算法细节3.1树生长策略3.2特征并行与数据并行3.3类别特征处理4.关键参数说明4.1核心参数4.2控制速度参数4.3控制过拟合参数5.与XGBoost对比6.实践建议7.代码示例8.适用场景9.局限性LightGBM算法详解LightGBM(Ligh
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$