- x86-64汇编语言训练程序与实战
十除以十等于一
本文还有配套的精品资源,点击获取简介:汇编语言是一种低级语言,与机器代码紧密相关,特别适用于编写系统级代码及性能要求高的应用。nasm编译器是针对x86和x86-64架构的汇编语言编译器,支持多种语法风格和指令集。项目Euler提供数学和计算机科学问题,鼓励编程技巧应用,前100个问题的答案可共享。x86-64架构扩展了寄存器数量并引入新指令,提升了数据处理效率。学习汇编语言能够深入理解计算机底层
- 15个小技巧,让我的Windows电脑更好用了!
曹元_
01.桌面及文档处理第一部分的技巧,主要是围绕桌面的一些基本操作,包括主题设置、常用文档文件快捷打开的多种方式等等。主题换色默认情况下,我们的Win界面可能就是白色的文档界面,天蓝色的图表背景,说不出哪里不好看,但是就是觉得不够高级。imageimage说到高级感,本能第一反应就会和暗色模式联想起来,如果我们将整个界面换成黑夜模式的话,它会是这样的。imageimage更改主题颜色及暗色模式,我们
- (二)SAP Group Reporting (GR) 核心子模块功能及数据流向架构解析
数据如何从子公司流转到合并报表的全过程,即数据采集→合并引擎→报表输出,特别是HANA内存计算如何优化传统ETL瓶颈。SAPGroupReporting(GR)核心模块功能及数据流向的架构解析,涵盖核心组件、数据处理流程和关键集成点,适用于S/4HANA1809+版本:一、核心功能模块概览模块功能关键事务码/FioriApp数据采集(DataCollection)整合子公司财务数据(SAP/非SA
- 9、汇编语言编程入门:从环境搭建到简单程序实现
神经网络酱
汇编语言MEPISGNU工具链
汇编语言编程入门:从环境搭建到简单程序实现1.数据存储介质问题解决在处理数据存储时,若要使用MEPIS系统,需确保有其可访问的存储介质。目前,MEPIS无法向采用NTFS格式(常用于Windows2000和XP工作站)的硬盘写入数据。不过,若硬盘采用FAT32格式,MEPIS就能进行写入操作。此外,MEPIS还能将文件写入软盘和大多数USB闪存驱动器。若工作站连接到局域网,还可通过FTP协议或挂载
- C++ 计数排序、归并排序、快速排序
每天搬一点点砖
c++数据结构算法
计数排序:是一种基于哈希的排序算法。他的基本思想是通过统计每个元素的出现次数,然后根据统计结果将元素依次放入排序后的序列中。这种排序算法适用于范围较小的情况,例如整数范围在0到k之间计数排序步骤:1初始化一个长度为最大元素值加1的计数数组,所有元素初始化为02遍历原始数组,将每个元素值作为索引,在计数数组中对应位置加13将数组清空4遍历计数器数组,按照数组中的元素个数放回到元数组中计数排序的优点和
- 实时数据流计算引擎Flink和Spark剖析
程小舰
flinkspark数据库kafkahadoop
在过去几年,业界的主流流计算引擎大多采用SparkStreaming,随着近两年Flink的快速发展,Flink的使用也越来越广泛。与此同时,Spark针对SparkStreaming的不足,也继而推出了新的流计算组件。本文旨在深入分析不同的流计算引擎的内在机制和功能特点,为流处理场景的选型提供参考。(DLab数据实验室w.x.公众号出品)一.SparkStreamingSparkStreamin
- 深入解析JVM工作原理:从字节码到机器指令的全过程
一、JVM概述Java虚拟机(JVM)是Java平台的核心组件,它实现了Java"一次编写,到处运行"的理念。JVM是一个抽象的计算机器,它有自己的指令集和运行时内存管理机制。JVM的主要职责:加载:读取.class文件并验证其正确性存储:管理内存分配和垃圾回收执行:解释或编译字节码为机器指令安全:提供沙箱环境限制恶意代码二、JVM架构详解JVM由三个主要子系统组成:1.类加载子系统类加载过程分为
- ARM 和 AMD 架构的区别
m0_69576880
arm开发windows架构
ARM架构和AMD架构是两种不同的计算机处理器架构,它们有以下几个主要区别:设计出发点、兼容性、性能特点、市场定价。设计出发点:①ARM构架:ARM架构最初是为嵌入式系统设计的,旨在提供低功耗和高效能的解决方案。它主要应用于移动设备、嵌入式系统和物联网设备②AMD架构:AMD架构是基于x86架构的扩展,旨在提供与Intel架构兼容的处理器。它主要用于台式机、服务器和工作站等计算机系统。兼容性:AR
- MotionLCM 部署优化 踩坑解决bug
AI算法网奇
aigc与数字人深度学习宝典文生motion
目录依赖项windowstorchok:渲染黑白图问题解决:humanml3d:sentence-t5-large下载数据:报错:Nomodulenamed'sentence_transformers'继续报错:fromtransformers.integrationsimportCodeCarbonCallback解决方法:推理相关转mesh:module‘matplotlib.cm‘hasno
- 【C++算法】76.优先级队列_前 K 个高频单词
流星白龙
优选算法C++c++算法开发语言
文章目录题目链接:题目描述:解法C++算法代码:题目链接:692.前K个高频单词题目描述:解法利用堆来解决TopK问题预处理一下原始的字符串数组,用一个哈希表统计一下每一个单词出现的频次。创建一个大小为k的堆频次:小根堆字典序(频次相同的时候):大根堆循环让元素依次进堆判断提取结果C++算法代码:classSolution{//定义类型别名,PSI表示对typedefpairPSI;//自定义比较
- 通义万相2.2:开启高清视频生成新纪元
Liudef06小白
特殊专栏AIGC人工智能人工智能通义万相2.2图生视频
通义万相2.2:开启高清视频生成新纪元2025年7月28日,中国AI领域迎来里程碑时刻——通义万相团队正式开源其革命性视频生成模型Wan2.2的核心权重,这标志着开源社区首次获得支持720P高清视频生成的先进模型架构。一、架构革新:混合专家系统1.1MoE视频扩散架构通义万相2.2首次将混合专家(MoE)架构引入视频扩散模型,通过双专家系统实现计算效率与模型容量的平衡:classMoEVideoD
- 模拟退火(SA):如何“故意走错路”,才能找到最优解?
小瑞瑞acd
小瑞瑞学数模模拟退火算法python启发式算法算法
模拟退火(SA):如何“故意走错路”,才能找到最优解?图示模拟退火算法如何通过接受较差解(橙色虚线标注)从局部最优(绿色点)逃逸,最终找到全局最优解(紫色点),展示其跳出局部极小值的能力。大家好,我是小瑞瑞!欢迎回到我的专栏!想象一下,你站在一座连绵不绝的山脉中,目标是找到海拔最低的那个山谷。你手上只有一个高度计,视野被浓雾笼罩,只能看清脚下的一小片区域。如果你是一个“贪心”的登山者,你的策略会非
- EasyPlayer播放器系列开发计划2025
xiejiashu
EasyPlayerEasyPlayerEasyPlayer播放器RTSP播放器js播放器Web播放器
EasyPlayer系列产品发展至今,已经超过10年,从最早的EasyPlayerRTSP播放器,到如今维护的3条线:EasyPlayer-RTSP播放器:Windows、Android、iOS;EasyPlayerPro播放器:Windows、Android、iOS;EasyPlayer.js播放器:H5;这3个播放器各有各的应用场景,用户量也是巨大,像RTSP版本的播放器,到今天依然还有很多低
- CodeFoeces-450B
ss5smi
题目原题链接:B.JzzhuandSequences题意根据公式公式计算对应fn的值。参考了其他作者的代码和思路。找循环点。负数取余需要加取余数到>0为止才可取余。代码#includeusingnamespacestd;constintmod=1e9+7;intmain(){longlongf[10],x,y,n;cin>>x>>y>>n;x=(x+mod)%mod;y=(y+mod)%mod;f
- 编程算法:技术创新的引擎与业务增长的核心驱动力
在数字经济时代,算法已成为推动技术创新与业务增长的隐形引擎。从存内计算突破冯·诺依曼瓶颈,到动态规划优化万亿级金融交易,编程算法正在重塑产业竞争格局。一、存内计算:突破冯·诺依曼瓶颈的算法革命1.1存内计算的基本原理传统计算架构中90%的能耗消耗在数据搬运上。存内计算(Processing-in-Memory)通过直接在存储单元执行计算,实现能效10-100倍提升:#传统计算vs存内计算能耗模型i
- 包含日志获取webshell
陈望_ning
日志文件关闭:Apache目录下的httpd.conf文件#ErrorLog"logs/error.log"#CustomLog"logs/access.log"common加#号为注释不产生日志文件如果去掉#将会在Apache/logs/目录下产生日志文件linux:access_logerror_logwindows:access.logerror.logaccess_log每一行记录了一次网
- 图论算法经典题目解析:DFS、BFS与拓扑排序实战
周童學
数据结构与算法深度优先算法图论
图论算法经典题目解析:DFS、BFS与拓扑排序实战图论问题是算法面试中的高频考点,本博客将通过四道LeetCode经典题目(均来自"Top100Liked"题库),深入讲解图论的核心算法思想和实现技巧。涵盖DFS、BFS、拓扑排序和前缀树等知识点,每道题配有Java实现和易错点分析。1.岛屿数量(DFS遍历)问题描述给定一个由'1'(陆地)和'0'(水)组成的二维网格,计算岛屿的数量。岛屿由水平或
- Java并发核心:线程池使用技巧与最佳实践! | 多线程篇(五)
bug菌¹
Java实战(进阶版)javaJava零基础入门Java并发线程池多线程篇
本文收录于「Java进阶实战」专栏,专业攻坚指数级提升,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!环境说明:Windows10+IntelliJIDEA2021.3.2+Jdk1.8本文目录前言摘要正文何为线程池?为什么需要线程池?线程池的好处线程池使用场景如何创建线程池?线程池的常见配置源码解析案例分享案例代码演示案例运行
- js操作样式
郝加升
DOM样式属性和方法:指定的元素,它的style有这么几个属性和方法:cssText:通过这个属性可以访问到元素的特性style设置的属性,并且可以直接赋值设置。removeProperty(属性名称):从样式中删除给定属性。setProperty(属性名称,值,权重):可以通过这个方法设置给定样式的同时设置其权重,可以传入”important”或者一个空字符串。获取计算后样式:window.ge
- 旧系统UI焕新陷阱:保留业务习惯与引入新交互的平衡点把控
贝格前端工场
ui交互
摘要**想给老旧系统换上“高颜值新衣”,却遭遇员工集体吐槽“不会用”?满心期待新交互能提升效率,结果用户操作频频出错,业务进度反而被拖慢?旧系统UI焕新本是优化体验的好机会,可在保留多年养成的业务操作习惯,与引入更先进便捷的新交互方式之间,却横亘着巨大鸿沟。稍有不慎,就会陷入“改了不如不改”的尴尬境地。这场关于“守旧”与“创新”的博弈,究竟该如何破局?一、旧系统UI焕新:一场甜蜜又棘手的改造工程旧
- AI模型训练中过拟合和欠拟合的区别是什么?
workflower
人工智能算法人工智能数据分析
在AI模型训练中,过拟合和欠拟合是两种常见的模型性能问题,核心区别在于模型对数据的学习程度和泛化能力:欠拟合(Underfitting)-定义:模型未能充分学习到数据中的规律,对训练数据的拟合程度较差,在训练集和测试集上的表现都不好(如准确率低、损失值高)。-原因:-模型结构过于简单(如用线性模型解决非线性问题);-训练数据量不足或特征信息不充分;-训练时间太短,模型尚未学到有效模式。-表现:训练
- mysql复习
立夏的李子
mysql数据库database
mysqlselect语法selectfromjoinwheregroupbyhavingorderbylimit联合查询innerjoin()leftjoin(以左表为基准,匹配右表,不匹配的返回左表,右表以null值填充)rightjoind··(去除列重复的数据)索引类型主键索引(PrimaryKey)唯一索引(Unique)常规索引(Index)全文索引(FullText)索引准则索引不是
- Deepseek技术深化:驱动大数据时代颠覆性变革的未来引擎
荣华富贵8
springboot搜索引擎后端缓存redis
在大数据时代,信息爆炸和数据驱动的决策逐渐重塑各行各业。作为一项前沿技术,Deepseek正在引领新一轮技术革新,颠覆传统数据处理与分析方式。本文将从理论原理、应用场景和前沿代码实践三个层面,深入剖析Deepseek技术如何为大数据时代提供颠覆性变革的解决方案。一、技术背景与核心思想1.1大数据挑战与机遇在数据量呈指数级增长的背景下,传统数据处理方法面临数据存储、计算效率和信息提取精度的诸多挑战。
- Anaconda 和 Miniconda:功能详解与选择建议
古月฿
python入门pythonconda
Anaconda和Miniconda详细介绍一、Anaconda的详细介绍1.什么是Anaconda?Anaconda是一个开源的包管理和环境管理工具,在数据科学、机器学习以及科学计算领域发挥着关键作用。它以Python和R语言为基础,为用户精心准备了大量预装库和工具,极大地缩短了搭建数据科学环境的时间。对于那些想要快速开展数据分析、模型训练等工作的人员来说,Anaconda就像是一个一站式的“数
- centos7安装配置 Anaconda3
Anaconda是一个用于科学计算的Python发行版,Anaconda于Python,相当于centos于linux。下载[root@testsrc]#mwgethttps://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.shBegintodownload:Anaconda3-5.2.0-L
- 大数据之路:阿里巴巴大数据实践——大数据领域建模综述
为什么需要数据建模核心痛点数据冗余:不同业务重复存储相同数据(如用户基础信息),导致存储成本激增。计算资源浪费:未经聚合的明细数据直接参与计算(如全表扫描),消耗大量CPU/内存资源。数据一致性缺失:同一指标在不同业务线的口径差异(如“活跃用户”定义不同),引发决策冲突。开发效率低下:每次分析需重新编写复杂逻辑,无法复用已有模型。数据建模核心价值性能提升:分层设计(ODS→DWD→DWS→ADS)
- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 量子计算解决气候变化:科学家找到了新方法
大力出奇迹985
量子计算
气候变化已成为全球面临的严峻挑战,传统计算方法在应对与之相关的复杂问题时存在诸多局限。而量子计算作为新兴技术,为解决气候变化难题带来曙光。本文深入剖析科学家利用量子计算应对气候变化的新方法。量子计算凭借独特的量子比特与量子特性,在加速气候模型计算、优化模型参数、预测极端天气事件等方面展现出巨大优势。同时,在可再生能源整合、电网管理、碳捕获等实际应用场景中也发挥着重要作用。尽管目前面临硬件和算法等方
- 神经形态计算如何突破冯·诺依曼架构限制?
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构架构ai
神经形态计算如何突破冯·诺依曼架构限制?关键词:神经形态计算、冯·诺依曼架构、内存墙、存算一体、脉冲神经网络、类脑芯片、低功耗计算摘要:本文将从“冯·诺依曼架构的前世今生”讲起,用“图书馆管理员搬书”的生活案例类比其核心矛盾,再通过“人脑神经元工作模式”的比喻引入神经形态计算的核心原理。我们将一步步拆解冯·诺依曼架构的三大限制(内存墙、高功耗、非结构化数据处理弱),并对应解析神经形态计算的三大突破
- lesson20:Python函数的标注
你的电影很有趣
python开发语言
目录引言:为什么函数标注是现代Python开发的必备技能一、函数标注的基础语法1.1参数与返回值标注1.2支持的标注类型1.3Python3.9+的重大改进:标准集合泛型二、高级标注技巧与最佳实践2.1复杂参数结构标注2.2函数类型与回调标注2.3变量注解与类型别名三、静态类型检查工具应用3.1mypy:最流行的类型检查器3.2Pyright与IDE集成3.3运行时类型验证四、函数标注的工程价值与
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_