- 深度探索:机器学习中的 条件生成对抗网络(Conditional GAN, CGAN)算法原理及其应用
目录1.引言与背景2.CGAN定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景生成对抗网络(GenerativeAdversarialNetworks,GANs)作为一种深度学习框架,在无监督学习领域展现出强大的能力,特别在图像、音频、文本等复杂数据的生成任务中取得了显著成果。然而,原始GAN模型在生成过程中缺乏对生成样本特定属性的直
- 【Python深度学习(第二版)(2)】深度学习之前:机器学习简史
roman_日积跬步-终至千里
#python深度学习(第二版)深度学习机器学习人工智能
文章目录一.深度学习的起源1.概率建模--机器学习分类器2.早期神经网络--反向传播算法的转折3.核方法--忽略神经网络4.决策树、随机森林和梯度提升机5.神经网络替代svm与决策树二.深度学习与机器学习有何不同可以这样说,当前工业界所使用的大部分机器学习算法不是深度学习算法。深度学习不一定总是解决问题的正确工具:有时没有足够的数据,深度学习不适用;有时用其他算法可以更好地解决问题。如果第一次接触
- 排序算法详解
whoarethenext
排序算法算法排序大学生
排序算法全面解析排序算法是计算机科学中最基础也最重要的算法之一。它将一组数据(例如数字列表、字符串集合)按照特定的顺序(升序或降序)重新排列。高效的排序算法对于优化其他算法(如搜索和合并算法)的效率至关重要。一、排序算法的基本思想与分类1.什么是排序?排序是将一个记录的任意序列重新排列成一个按键值有序的序列的过程。这里的“键”是记录中用于比较的部分。2.为什么需要排序?快速查找:在有序数据中查找特
- ROS局部路径规划器psolqr_local_planner
研创通之逍遥峰
机器人
PSOLQR局部路径规划算法及其与其他算法的对比分析路径规划是机器人导航系统中的核心组件,而局部路径规划算法则负责在全局路径的基础上,根据实时传感器数据进行局部调整和优化。PSOLQR(ParticleSwarmOptimizationandLinearQuadraticRegulator)是一种结合了粒子群优化(PSO)和线性二次调节器(LQR)的混合局部路径规划算法。本文将详细介绍PSOLQR
- 算法之回溯法
不是仙人的闲人
#数据结构与算法算法开发语言c++数据结构
回溯法回溯法定义与概念核心思想回溯法的一般框架伪代码表示C语言实现框架回溯法的优化技巧剪枝策略实现剪枝的C语言示例记忆化搜索案例分析N皇后问题子集和问题全排列问题寻路问题回溯法的可视化理解决策树状态空间树回溯过程回溯法与其他算法的比较回溯法与动态规划的区别回溯法与贪心算法的区别总结应用场景总结优化技巧总结回溯法定义与概念回溯法是一种通过探索所有可能的候选解来找出所有解的算法。它采用试错的思想,尝试
- 贪心算法:原理、应用与优化
sewinger
贪心算法算法
1.什么是贪心算法?贪心算法(GreedyAlgorithm)是一种逐步构建解决方案的算法,它每次选择当前最优的局部解,期望通过局部最优解的累积,最终获得全局最优解。与动态规划等其他算法相比,贪心算法追求的是“贪心”地做出每一步最优的决策,而不是考虑整体的情况或后续可能发生的变化。然而,贪心算法并不总是能保证得到全局最优解,因此,它通常适用于满足贪心选择性质和最优子结构的问题。1.1贪心算法的基本
- 深度探索:层次聚类算法在机器学习中的原理与应用
生瓜蛋子
机器学习机器学习算法聚类
目录1.引言与背景2.层次聚类定理3.算法原理4.算法实现Python代码实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景层次聚类(HierarchicalClustering)是一种重要的无监督机器学习聚类方法,它通过构建一棵层次分明的聚类树(Dendrogram),以递归方式将数据点逐步合并或分割,从而揭示数据内在的层次结构和相似性关系。层次聚类最初由J
- 深度探索:机器学习中的编码器-解码器模型(Encoder-Decoder)原理及应用
生瓜蛋子
机器学习机器学习人工智能
目录1.引言与背景2.核心原理与算法基础3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景在机器学习的广阔领域中,编码器-解码器(Encoder-Decoder)模型作为一种强大且灵活的框架,近年来在自然语言处理(NLP)、图像处理、语音识别等多个领域中取得了显著成就。随着深度学习技术的迅速发展,编码器-解码器模型以其独特的双阶段处理方式,
- 【WSN覆盖优化】基于灰狼优化算法的三维异构无线传感器网络覆盖 基于GWO的三维异构WSN覆盖优化【Matlab代码#84】
天`南
Matlab#WSN覆盖算法matlab开发语言
文章目录【可更换其他算法,`获取资源`请见文章第6节:资源获取】1.灰狼优化算法2.三维WSN节点感知模型3.异构WSN覆盖问题4.部分代码展示5.仿真结果展示6.资源获取【可更换其他算法,获取资源请见文章第6节:资源获取】1.灰狼优化算法此处略。2.三维WSN节点感知模型本文所使用的模型是传感器部署研究中最常见的一种感知模型-布尔感知模型。布尔感知模型比较简单,定义如下:N节点的感知范围是以节点
- 深度探索:机器学习中的WGAN-GP算法原理及其应用
生瓜蛋子
机器学习机器学习算法人工智能
目录1.引言与背景2.Wasserstein距离与WGAN定理3.WGAN-GP算法原理4.WGAN-GP算法实现5.WGAN-GP优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景在机器学习领域,生成对抗网络(GenerativeAdversarialNetworks,GANs)作为一种强大的无监督学习模型,已广泛应用于图像生成、视频合成、语音转换、数据增强等众多领
- leetcode刷题(javaScript)——数组相关场景题总结
三月的一天
Leetcode刷题技巧总结算法
数组只是一种数据结构,通常结合其他算法场景出现。这里总结几类在LeetCode刷题时,针对数组相关的场景题,可以使用以下技巧和方法:双指针法:快慢指针用于解决数组中的有序问题,如移除重复项、找出唯一元素等。左右指针用于解决数组中的对撞问题,如两数之和、接雨水等。排序:对数组进行排序可以简化很多问题,如对数组进行排序后,可以更容易地解决部分排序问题。哈希表:使用对象字面量或Map结构存储键值对,可以
- 【IT大学生必会的】 10 种图表线性回归
.Boss.
深度学习开发语言人工智能机器学习算法
这段时间,不少同学提到了一些图表的问题。每次在使用matplotlib画图,运用这些图表说明问题的时候,很多时候是模糊的,比如说什么时候画什么图合适?其实这个根据你自己的需求,自己的想法来就行。今天的话,我这里举例在线性回归中,最常用的一些图表,应该可以cover绝大多数情况了。其他算法模型适用的图表,咱们在后面再给大家进行总结~至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在
- 贪心算法简介(greed)
神里流~霜灭
贪心算法精讲贪心算法c++c语言数据结构顺序表链表动态规划
前言:贪心算法(GreedyAlgorithm)是一种在每个决策阶段都选择当前最优解的算法策略,通过局部最优的累积来寻求全局最优解。其本质是"短视"策略,不回溯已做选择。什么是贪心、如何来理解贪心(个人对贪心的理解)前言对贪心是一种概念的回答。接下来就了解一下自己对贪心的理解,如果学习算法的化建议优先学习动态规划,动态规划相对于其他算法来说很简单。但是,贪心算法跟动态规划不同,非常难,贪心讲究策略
- 从公布的11批其他算法类别分析
老赵聊算法、大模型备案
人工智能机器人算法AIGC语言模型
2025年3月12日,国家网信办分别发布了深度合成算法及互联网信息服务算法备案信息(其他类别算法)的公告,其中深度合成算法3月份批次通过共计395款,其他算法种类通过45款。具体分析如下:一、算法类别:序号算法类别数量占比1个性化推送类31749%2检索过滤类20431.53%3排序精选类578.81%4调度决策类599.12%5生成合成类101.55合计jxh152637647100%从算法类别
- 基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测
机器学习和优化算法
多头注意力机制深度学习神经网络人工智能机器学习单变量时序预测BiLSTM多头注意力机制
目录1、代码简介2、代码运行结果展示3、代码获取1、代码简介基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测(单输入单输出)1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!2.需要其他算法的都可以定制!注:1️⃣、运行环境要求MATLAB版本为2023b及其以上。【没有我赠送】2️⃣、评价指标包括:R
- Android 加解密算法工具类封装:AES、RSA、MD5 一站式解决方案
tangweiguo03051987
android算法AESDESMD5JAVA
在Android开发中,数据的安全性非常重要,尤其是敏感数据的存储和传输。为了实现数据加密和解密,我们可以封装一个通用的加解密工具类,支持常见的加密算法(如AES、RSA、DES等)。以下是一个基于AES对称加密算法的工具类封装示例,同时提供扩展性以支持其他算法。AES加解密工具类封装AES(AdvancedEncryptionStandard)是一种对称加密算法,加密和解密使用相同的密钥。以下是
- benchmark和baseline的联系与区别
Lntano__y
人工智能深度学习机器学习
在深度学习算法中,benchmark(基准)和baseline(基线)是两个常用的概念,用于评估算法的性能和进行比较。尽管它们有一些相似之处,但它们在定义和使用上有一些区别。Benchmark(基准):基准是指作为参考标准的一组算法或数据集,通常是在特定任务或领域中广泛接受的准则。基准的目标是提供一个衡量算法性能的标准,以便其他算法可以与之进行比较。基准可以是一种算法、一个数据集或者是两者的结合。
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- 【机器学习】支持向量机(SVM)详解:原理与优化
宸码
机器学习模式识别支持向量机机器学习算法人工智能数据挖掘python
支持向量机(SVM)详解:原理与优化支持向量机(SVM)详解1.基本概念2.数学原理2.1线性可分情况2.2最优化问题2.3拉格朗日对偶问题2.4核函数技巧(KernelTrick)2.5非线性分类与支持向量3.优缺点分析3.1优点3.2缺点4.SVM与其他算法的比较5.总结支持向量机(SVM)详解1.基本概念支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,
- 深度探索:机器学习中的粒子群优化算法(PBMT)原理及应用
生瓜蛋子
机器学习机器学习算法人工智能
目录一、引言与背景二、定理三、算法原理四、算法实现五、优缺点分析优点:缺点:六、案例应用七、对比与其他算法八、结论与展望一、引言与背景随着机器学习技术的迅速发展,优化算法在模型训练、特征选择、参数调优等多个环节扮演着至关重要的角色。粒子群优化(ParticleSwarmOptimization,PBMT)作为一类灵感源自鸟群觅食行为的群体智能优化算法,自1995年提出以来,因其简单、高效的特点,在
- 机器学习——逻辑回归
口_天_光健
python机器学习逻辑回归
逻辑回归技术文档目录简介逻辑回归的基本概念逻辑回归的数学原理逻辑回归的实现步骤代码示例逻辑回归的应用逻辑回归的优化方法逻辑回归的局限性逻辑回归的扩展与变体逻辑回归与其他算法的对比总结简介逻辑回归(LogisticRegression)是一种广泛应用于分类问题的统计方法。尽管名字中有“回归”二字,但逻辑回归实际上是一种分类算法,主要用于二分类问题,但也可以通过扩展用于多分类问题。逻辑回归通过使用逻辑
- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 经典算法之链表篇(三)
dlwlrma ⥳
LeetCode刷题算法链表数据结构
目录一:旋转链表(LeetCode.61)二:LRU缓存(LeetCode.146)有关链表的其他算法题,可以参考我上篇写的文章经典算法之链表篇(二)一:旋转链表(LeetCode.61)问题描述:给你一个链表的头节点head,旋转链表,将链表每个节点向右移动k个位置。示例:输入:head=[1,2,3,4,5],k=2输出:[4,5,1,2,3]解题思路:计算链表的长度,并找到链表的尾节点,同时
- 深度探索:机器学习中的序列到序列模型(Seq2Seq)原理及其应用
生瓜蛋子
机器学习机器学习人工智能
目录1.引言与背景2.庞特里亚金定理与动态规划3.算法原理4.算法实现5.优缺点分析优点缺点6.案例应用7.对比与其他算法8.结论与展望1.引言与背景在当今信息爆炸的时代,机器学习作为人工智能领域的核心驱动力,正以前所未有的深度和广度渗透进我们的日常生活。从语言翻译、文本摘要、语音识别到对话系统,众多自然语言处理(NLP)任务的成功解决离不开一种强大的模型架构——序列到序列(Sequence-to
- Java基础算法之堆排序(Heap Sort)
被惦记的猫
排序算法算法排序算法堆排序
堆排序(HeapSort)1、堆介绍2、算法介绍3、图解4、代码实现5、执行结果6、其他算法1、堆介绍大顶堆:非叶子结点的数据要大于或等于其左,右子节点的数据小顶堆:非叶子结点的数据要小于或等于其左,右子节点的数据2、算法介绍先从后面的非叶子结点从后向前将结点构建成一个大顶堆(小顶堆)。此时根节点就是最大的数据(最小的数据),然后将根节点与数组最后一位进行交换。交换后再从根节点开始构建堆(此时树的
- 基础算法 - 快速排序、归并排序、二分查找、高精度模板、离散化数据
Calebbbbb
算法算法排序算法二分高精度模板离散化快速排序归并排序
文章目录前言Part1:排序一、快速排序二、归并排序Part2:二分一、二分-查找左边界二、二分-查找右边界Part3:高精度一、高精度加法二、高精度减法三、高精度乘法四、高精度除法Part4:离散化一、区间和前言由于本篇博客相较而言都是算法中最基础的模板,包括快速排序、归并排序、二分、高精度加减乘除法、离散化。这些基础模板多与其他算法混合考察,这些模板是许多算法的实现基础。Part1:排序快速排
- 蓝桥杯:C++二叉树
DaveVV
蓝桥杯c++蓝桥杯c++算法数据结构c语言
二叉树几乎每次蓝桥杯软件类大赛都会考核二叉树,它或者作为数据结构题出现,或者应用在其他算法中。大部分高级数据结构是基于二叉树的,例如常用的高级数据结构线段树就是基于二叉树的。二叉树应用广泛和它的形态有关。二叉树的定义:二叉树的第1层是一个结点,称为根,它最多有两个子结点,分别是左子结点、右子结点,以它们为根的子树称为左子树、右子树。二叉树上的每个结点,都是按照这个规则逐层往下构建出来的。图3.4二
- shiro登陆时密码加盐哈希实现和简单原理
ignoHH
javashirospringbootjavashiro密码学
shiro登陆时密码加盐哈希实现版权声明:本文为博主原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/wy862740672/article/details/109818314实现废话不多说,开搞。此篇采用SHA-256哈希算法,采用其他算法只需要更改算法名字段。1.在shiro配置中添加对于HashedCredent
- 面试:正确率能很好的评估分类算法吗
华农DrLai
分类数据挖掘人工智能机器学习深度学习大数据算法
正确率(accuracy)正确率是我们最常见的评价指标,accuracy=(TP+TN)/(P+N),正确率是被分对的样本数在所有样本数中的占比,通常来说,正确率越高,分类器越好。不同算法有不同特点,在不同数据集上有不同的表现效果,根据特定的任务选择不同的算法。如何评价分类算法的好坏,要做具体任务具体分析。对于决策树,主要用正确率去评估,但是其他算法,只用正确率能很好的评估吗?答案是否定的。正确率
- 2019-10-10 kNN近邻算法
lqzzz
kNN近邻算法算法原理样本点的特性与该邻居点的特性类似,可以简单理解为“物以类聚”。因此可以使用目标点的多个邻近点的特性表示当前点的特性。k近邻算法是非常特殊的,可以被认为是没有模型的算法,为了和其他算法统一,可以认为训练数据集就是模型本身。KNN分类算法:“投票法”,选择这k个样本中出现最多的类别标记作为预测结果。KNN回归算法:“平均法”,将这k个样本的实值输出标记的平均值作为预测结果。欧拉距
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio