- AIGC 领域 AI 写作在电商文案中的应用技巧
SuperAGI架构师的AI实验室
AI大模型应用开发宝典AIGC人工智能easyuiai
AIGC领域AI写作在电商文案中的应用技巧关键词:AIGC、AI写作、电商文案、内容生成、自然语言处理、营销自动化、个性化推荐摘要:本文深入探讨了AIGC(人工智能生成内容)技术在电商文案创作中的应用技巧。文章首先介绍了AIGC的基本概念和发展现状,然后详细分析了AI写作在电商领域的核心应用场景和技术原理。通过具体的算法解析、数学模型和实际案例,展示了如何利用AI技术提升电商文案的创作效率和质量。
- Python高级数据结构——分治法(Divide and Conquer)
Echo_Wish
Python笔记数据结构与算法Python算法数据结构
Python中的分治法(DivideandConquer):高级算法解析分治法是一种将问题划分为更小的子问题,解决子问题后再将结果合并的算法设计方法。它常被应用于解决复杂问题,如排序、搜索、图问题等。在本文中,我们将深入讲解Python中的分治法,包括基本概念、算法框架、具体应用场景,并使用代码示例演示分治法在实际问题中的应用。基本概念1.分治法的定义分治法将一个大问题划分为若干个规模较小且相互独
- 【Vue 3 Diff算法解析:从排队老头到最长递增子序列(LIS)】
Gazer_S
Vue3算法vue.js算法前端
Vue3Diff算法解析:从排队老头到最长递增子序列(LIS)前言Vue3的diff算法是前端框架中的一颗明珠,它通过巧妙的最长递增子序列(LIS)算法,将DOM操作的复杂度从O(n²)降低到O(nlogn)。但这个算法对很多开发者来说就像一本天书,充满了抽象的概念和复杂的逻辑。今天我们用通俗易懂的比喻来揭开它的神秘面纱。一、核心理念:老头排队的智慧1.1问题场景想象一下,有一群老头要按年龄从小到
- 人工智能概述
雪碧聊技术
人工智能人工智能
欢迎来到AI奇妙世界!亲爱的开发者朋友们,大家好!我是人工智能领域的探索者与分享者,很高兴在CSDN与你们相遇!在这里,我将持续输出AI前沿技术、实战案例、算法解析等内容,希望能和大家一起学习、交流、成长!为什么关注AI?人工智能正在重塑世界!深度学习让机器拥有“视觉”“听觉”**大模型(如GPT、文心一言)**改变人机交互方式数据科学赋能商业决策AI医疗助力精准诊断智能推荐优化用户体验无论你是A
- 机器学习算法解析:XGBoost与LightGBM
AI天才研究院
AI人工智能与大数据AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习算法解析:XGBoost与LightGBM作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:XGBoost,LightGBM,高效特征选择,并行化训练,自动调参,弱分类器集成1.背景介绍1.1问题的由来随着数据科学和人工智能技术的发展,越来越多的问题需要利用机器学习算法进行解决。传统的一维决策树虽然直观且易于理解,但在面对高维度数据集时
- 大语言模型:人像摄影的“达芬奇转世”?——从算法解析到光影重塑的智能摄影革命
黑巧克力可减脂
AIGC语言模型人工智能自然语言处理
导言在摄影术诞生之初,达芬奇或许无法想象,他对于光影、比例和解剖的严谨研究,会在数百年后以另一种形式重生。今天,当摄影师面对复杂的光线环境或苦苦寻找最佳构图时,一位由代码构筑的“光影军师”正悄然降临——大语言模型(LLM)正以前所未有的方式,重塑人像摄影的创作边界。解构经典:大语言模型如何“消化”百年摄影智慧大语言模型并非凭空创造建议,其根基在于对海量摄影知识体系的深度理解与结构化重组。理论内化:
- 【自动驾驶】经典LSS算法解析——深度估计
IRevers
个人学习笔记自动驾驶算法人工智能深度学习python机器学习
LSS-Lift.Splat,Shoot论文题目:Lift,Splat,Shoot:EncodingImagesFromArbitraryCameraRigsbyImplicitlyUnprojectingto3D代码:https://github.com/nv-tlabs/lift-splat-shoot概括:先做深度估计和特征融合,然后投影到BEV视图中,在BEV视图中做特征融合,在融合后的特
- 直线插补动画引擎:从数学原理到C#实现——用代码绘制动态几何艺术
墨夶
C#学习资料c#算法开发语言
一、直线插补核心算法解析1.1DDA算法数学原理//////DDA算法实现直线插补///publicclassLineInterpolator{privatePointF_currentPoint;privatePointF_endPoint;privatefloat_stepSize;privatefloat_dx,_dy;privatefloat_xIncrement,_yIncrement;
- 多目标路径规划:IMOMD-RRT*算法详解
多目标路径规划项目结构与关键算法解析一、项目版本概览该路径规划项目共包含两个主要版本:两个版本的共同点:配置文件路径:config/algorithm_config.yamlsystem:使用不同算法的编号destination:定义目标点的ID列表map:指定使用的地图文件pseudo:1:仅规划起点到终点0:多目标路径规划两个版本的区别:✅新版特点:路径生成由src/main可执行文件完成;支
- LeetCode算法解析:全面掌握编程挑战与面试技能
黄浴
本文还有配套的精品资源,点击获取简介:LeetCode作为一个在线编程平台,提供了丰富的算法问题,帮助程序员提升编程技能和面试准备。内容覆盖了多种计算机科学领域,包括数据结构和算法,以及各类编程难题。解决这些问题有助于深化对编程语言、数据结构和算法的理解,并提高系统设计和软件开发能力。本解析可能会包含一个名为“leetcode-master”的开源项目,该项目包含了不同编程语言的LeetCode问
- Go项目限流全攻略:超越中间件的全方位解决方案
码农老gou
golang中间件开发语言
引言:限流在分布式系统中的重要性在当今高并发的互联网应用中,流量控制已成为保障系统稳定性的关键手段。一次突发的流量洪峰可能导致整个系统崩溃,造成不可估量的损失。作为Go开发者,我们常常会面临这样的面试问题:Go项目中如何实现限流?仅仅使用中间件就足够了吗?本文将深入探讨Go项目中的限流策略,分析中间件的局限性,并介绍超越中间件的全方位解决方案。一、常见限流算法解析1.令牌桶算法(TokenBuck
- React.js前端开发中的性能优化的常见挑战与解决思路
大厂前端小白菜
前端开发实战react.js性能优化前端
React.js前端开发中的性能优化的常见挑战与解决思路关键词:React性能优化、虚拟DOM、重新渲染、代码分割、内存管理摘要:本文深入探讨React应用开发中常见的性能瓶颈及其解决方案。从虚拟DOM原理到Fiber架构演进,从组件渲染机制到内存泄漏预防,通过算法解析、数学模型验证和实战案例,系统性地构建React应用性能优化知识体系。本文还将提供可落地的性能检测工具链和最佳实践方案。文章目录R
- 梯度增强与XGBoost算法解析
weixin_47233946
算法算法
##一、梯度增强(GradientBoosting)原理###1.1集成学习与Boosting集成学习通过结合多个弱模型提升整体性能,主要包括Bagging(如随机森林)和Boosting两类方法。**梯度增强**属于Boosting家族,核心思想是**串行训练模型,每一步修正前序模型的残差**,最终形成强预测器。###1.2算法核心流程1.**初始化基模型**:用常数(如目标变量均值)预测。2.
- 计算机视觉算法实战——手势识别:技术、实现与未来展望(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.手势识别领域介绍手势识别作为人机交互(HCI)领域的重要组成部分,已经成为计算机视觉研究的热点方向之一。这项技术通过摄像头捕捉人类手部动作,利用算法解析这些动作所代表的含义,进而实现与计算机系统的自然交互。手势识别系统通常包含以下几个关键环节:图像采集、预处理、特征提取、分类识别以
- 自适应限流算法实战
双囍菜菜
#Go高吞吐架构算法Golang
自适应限流算法实战文章目录自适应限流算法实战一、限流算法演进史:从静态到自适应1.1传统限流算法的致命缺陷1.2自适应限流的革命性突破二、自适应限流核心指标体系2.1黄金四维指标2.2指标融合公式三、经典自适应算法解析3.1TCPBBR带宽自适应算法核心限流应用3.2NetflixConcurrencyLimit梯度下降策略智能探针机制四、AI赋能的智能限流4.1LSTM预测模型架构4.2强化学习
- 基于EKF的三自由度车辆定位算法解析与实践
南风寺山
本文还有配套的精品资源,点击获取简介:扩展卡尔曼滤波器(EKF)是处理非线性系统的有效算法,广泛应用于车辆定位、自动驾驶和机器人导航。本文档提供的源码针对车辆三自由度动态模型实现了EKF,通过传感器数据融合提高了车辆定位的精度。文档详细解析了EKF在车辆定位中的应用,从基础理论到算法流程,再到源码的具体实现,为开发者提供了深入学习EKF的机会,并展示了如何利用EKF实现精确的车辆定位。1.EKF基
- 从 PPO、DPO 到 GRPO:大语言模型策略优化算法解析
Gowi_fly
深度学习LLM强化学习
从PPO、DPO到GRPO:大语言模型策略优化算法解析背景与简介大语言模型(LLM)的训练通常分为预训练和后训练两个阶段。预训练阶段,模型在海量文本上学习下一词预测的能力;后训练阶段,我们希望进一步对齐模型输出与人类偏好,使模型给出的答案更符合人类期待。这常通过人类反馈强化学习(RLHF)来实现。RLHF的典型流程是:先让人类对模型的不同回答进行比较,得到偏好数据,然后训练一个奖励模型来评估回答质
- 45 | 位图:如何实现网页爬虫中的URL去重功能?
写文章的大米
数据结构&算法数据结构算法
↑↑↑欢迎关注,分享更多IT技术注:本笔记为公司内部技术小组持续学习2年多时间+个人整理不下5次的结果产出。目录45|位图:如何实现网页爬虫中的URL去重功能?算法解析位图(BitMap)布隆过滤器45|位图:如何实现网页爬虫中的URL去重功能?开篇题如何实现网页爬虫中的URL去重功能?算法解析需求功能性需求添加一个URL查询一个URL非功能性
- 前端十种排序算法解析
涛哥码咖
算法排序算法前端算法
1.冒泡排序1.1说明冒泡排序为一种常用排序算法,执行过程为从数组的第一个位置开始,相邻的进行比较,将最大的数移动到数组的最后位置执行的时间复杂度与空间复杂度为o(n^2)1.2执行过程从数组的第一个位置开始,截止位置为arr.length-1-i,相邻比较元素值如果前个元素值大于后个相邻元素值,交换两个元素的值重复执行2步骤for循环执行的次数完成及完成排序1.3实现代码functionbubb
- 操作系统关键知识点之实时调度算法解析与应用
一杯年华@编程空间
算法
操作系统关键知识点之实时调度算法解析与应用本次重新学习操作系统,希望将学习内容进行总结,与大家一同学习进步。以下将梳理文档中的核心知识点,并以通俗语言讲解,标注重点,最后通过表格总结。一、核心知识点总结与通俗讲解(一)实时系统的可调度性判定知识点:通过公式(\sum_{i=1}^{m}\frac{C_{i}}{P_{i}}\leq1)判断系统是否可调度,其中(m)为进程数,(C_i)为进程(i)的
- Brduino脑机连载(十一)P300 脑电识别常用算法
Brduino脑机接口技术答疑
算法
P300脑电识别常用算法解析在脑机接口(Brain-ComputerInterface,BCI)领域,P300作为一种极具代表性的事件相关电位(Event-RelatedPotentials,ERP)成分,具备重要的应用价值。通过对大脑在特定刺激下产生的P300电位进行识别,能够解读大脑意图,进而实现大脑与外部设备之间的交互。本文旨在深入探讨P300脑电识别中常用的一些算法,剖析其原理、应用及各自
- 可解释性医疗影像算法解析
智能计算研究中心
其他
内容概要在医疗影像分析领域,可解释性算法的核心价值在于建立临床诊断的透明化决策路径。本文通过系统性解构深度学习框架下的技术链条,揭示从数据标注、特征工程到模型评估的全流程透明度构建方法。研究聚焦卷积神经网络(CNN)与注意力机制的双向协同作用,量化分析其在肺结节检测、肿瘤分割等场景中的特征可视化效果。为平衡算法性能与可解释性需求,文中提出基于多维度评估指标的优化框架(见表1),涵盖准确率、召回率、
- AI人工智能主动学习的算法解析
AI云原生与云计算技术学院
人工智能学习算法ai
AI人工智能主动学习的算法解析关键词:主动学习、机器学习、人工智能、数据标注、查询策略、半监督学习、模型优化摘要:本文深入解析AI领域中的主动学习算法,这是一种让机器学习模型能够"主动"选择最有价值数据进行学习的智能方法。我们将从基本概念出发,通过生活化的比喻解释其工作原理,详细分析核心算法和数学模型,并提供Python实现示例。文章还将探讨主动学习的实际应用场景、工具资源以及未来发展趋势。背景介
- Python实现快速排序的三种经典写法及算法解析
宸津-代码粉碎机
算法数据结构python
今天想熟悉一下python的基础写法,那就从最经典的快速排序来开始吧:1、经典分治写法(原地排序)时间复杂度:平均O(nlogn),最坏O(n²)空间复杂度:O(logn)递归栈空间特点:通过左右指针交换实现原地排序defquick_sort(arr,low,high):iflowpivot]returnquick_sort(left)+middle+quick_sort(right)3、尾递归优
- Python 爬虫实战:猫眼电影登录与票房数据爬取(请求签名算法解析)
yansideyucsdn
python爬虫实战python爬虫算法
一、引言猫眼电影作为国内知名的电影票务平台,提供了丰富的电影票房数据和影评信息。通过Python爬虫技术,我们可以抓取猫眼电影的票房数据,进行数据分析和可视化展示。本文将详细介绍如何使用Python爬虫技术抓取猫眼电影的票房数据,并解析请求签名算法,实现合法合规的数据采集。二、项目背景与目标2.1项目背景猫眼电影平台拥有海量的电影票房数据和用户评价,这些数据对于电影行业从业者、研究人员以及普通观众
- C语言多级指针三维理解法:从变量地址到函数回调
星辰夜语666
Cc语言开发语言
博主介绍:精通C、Python、Java、JavaScript等编程语言,具备全栈开发能力。日常专注于分享编程干货、算法解析、项目实战经验,以及前沿技术动态。让我们一起在技术的道路上不断探索,共同成长!C语言多级指针三维理解法:从变量地址到函数回调1.引言在C语言的学习和使用过程中,指针一直是一个核心且具有挑战性的概念,而多级指针更是让许多开发者望而却步。多级指针不仅涉及到内存地址的复杂操作,还在
- 【普及−】洛谷P1706 全排列问题
CCF_NOI.
信息学奥赛C++图的遍历算法
见:P1706全排列问题-洛谷题目描述按照字典序输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字。输入格式一个整数n。输出格式由1∼n组成的所有不重复的数字序列,每行一个序列。每个数字保留5个场宽。输入输出样例输入#13输出#1123132213231312321说明/提示1≤n≤9。算法解析DFS,对楼上的回溯+剪枝进行详解。我们以N=3为例,构造一
- DALL·E 2 生成图像的风景增强:如何优化旅行照片
AI天才研究院
DALL·E2风景ai
DALL·E2生成图像的风景增强:如何优化旅行照片关键词:DALL·E2、图像生成、风景增强、AI修图、旅行照片优化、深度学习、计算机视觉摘要:本文深入探讨了如何利用OpenAI的DALL·E2模型来增强和优化旅行照片中的风景元素。我们将从技术原理出发,详细解析DALL·E2的图像生成机制,并提供实用的分步指南,展示如何通过AI技术将普通旅行照片转化为令人惊叹的艺术作品。文章包含核心算法解析、数学
- Java领域JVM的堆内存的动态扩展与收缩
Java技术栈实战
javajvm数学建模ai
Java领域JVM的堆内存的动态扩展与收缩关键词:JVM、堆内存、动态扩展、垃圾回收、内存管理、性能调优、GC策略摘要:本文深入探讨Java虚拟机(JVM)中堆内存的动态扩展与收缩机制。我们将从JVM内存模型基础出发,详细分析堆内存的动态调整原理、触发条件、实现机制以及对系统性能的影响。文章包含核心算法解析、数学模型建立、实际案例演示以及最佳实践建议,帮助开发者深入理解并优化JVM内存管理。1.背
- 工业视觉阈值技术圣经:VisionMaster六维算法解析+脑图攻防手册
Ro小陌
VisionMaster视觉算法计算机视觉视觉检测
VisionMaster阈值方式深度解析及脚本实现指南VisionMaster的阈值处理是Blob分析、缺陷检测等视觉任务的核心模块,其阈值方式根据应用场景的复杂性提供了多种灵活选择。一、阈值方式分类及原理单阈值(SingleThreshold)原理:设定固定阈值,根据极性划分目标与背景。亮于背景:灰度≥低阈值的像素被保留(范围:[低阈值,255])暗于背景:灰度≤低阈值的像素被保留(范围:[0,
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag