- 最新阿里四面面试真题46道:面试技巧+核心问题+面试心得
风平浪静如码
前言做技术的有一种资历,叫做通过了阿里的面试。这些阿里Java相关问题,都是之前通过不断优秀人才的铺垫总结的,先自己弄懂了再去阿里面试,不然就是去丢脸,被虐。希望对大家帮助,祝面试成功,有个更好的职业规划。一,阿里常见技术面1、微信红包怎么实现。2、海量数据分析。3、测试职位问的线程安全和非线程安全。4、HTTP2.0、thrift。5、面试电话沟通可能先让自我介绍。6、分布式事务一致性。7、ni
- Anaconda 和 Miniconda:功能详解与选择建议
古月฿
python入门pythonconda
Anaconda和Miniconda详细介绍一、Anaconda的详细介绍1.什么是Anaconda?Anaconda是一个开源的包管理和环境管理工具,在数据科学、机器学习以及科学计算领域发挥着关键作用。它以Python和R语言为基础,为用户精心准备了大量预装库和工具,极大地缩短了搭建数据科学环境的时间。对于那些想要快速开展数据分析、模型训练等工作的人员来说,Anaconda就像是一个一站式的“数
- Pandas:数据科学的超级瑞士军刀
科技林总
DeepSeek学AI人工智能
**——从零基础到高效分析的进化指南**###**一、Pandas诞生:数据革命的救世主****2010年前的数据分析噩梦**:```python#传统Python处理表格数据data=[]forrowincsv_file:ifrow[3]>100androw[2]=="China":data.append(float(row[5])#代码冗长易错!```**核心痛点**:-Excel处理百万行崩
- 数据分析领域中AI人工智能的发展前景展望
AI大模型应用工坊
AI大模型开发实战数据分析人工智能数据挖掘ai
数据分析领域中AI人工智能的发展前景展望关键词:数据分析、人工智能、机器学习、深度学习、数据挖掘、预测分析、自动化摘要:本文深入探讨了人工智能在数据分析领域的发展现状和未来趋势。我们将从核心技术原理出发,分析AI如何改变传统数据分析范式,详细讲解机器学习算法在数据分析中的应用,并通过实际案例展示AI驱动的数据分析解决方案。文章还将探讨行业应用场景、工具生态以及未来发展面临的挑战和机遇,为数据分析师
- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- 数据可视化:数据世界的直观呈现
卢政权1
信息可视化数据分析数据挖掘
在当今数字化浪潮中,数据呈爆炸式增长。数据可视化作为一种强大的技术手段,能够将复杂的数据转化为直观的图形、图表等形式,让数据背后的信息一目了然。无论是在商业决策、科学研究还是日常数据分析中,数据可视化都发挥着极为重要的作用。它帮助我们快速理解数据的分布、趋势、关联等特征,从而为进一步的分析和行动提供有力支持。接下来,我们将深入探讨数据可视化的奥秘,并通过代码示例展示其实际应用。一、Python数据
- 写完作业的感觉很爽
乡村算卦师
今天终于一口气把一个数据分析课的作业写完了。明天还要继续写一个,写完,就可以暂时轻松一下了。想想还是很开心的,哈哈哈。刚出去跑了一圈,结果下雨了,虽然不是很大,可是没办法跑,怕下大。现在在小区门口,吹吹风,也是极好的。希望一些都变的越来越好,加油!
- 一地鸡毛—一个中年男人的日常2021241
随止心语所自欲律
2021年8月31日,星期二,阴有小雨。早起5:30,跑步10公里。空气清新,烟雨朦胧,远山如黛,烟雾缭绕,宛若仙境。空气中湿气很大,朦胧细雨拍打在脸上,甚是舒服,跑步的人明显减少。早上开会,领导说起逐年大幅度下滑的工作业绩,越说越激动,说得脸红脖子粗。开完会又讨论了一下会议精神,心情也有波动,学习热情不高。心里还有一个大事,是今日大数据分析第1次考试,因自己前期没学,而且计算机编程方面没有任何基
- Amazon广告投放:如何精准筛选并添加关键词?
新置元
人工智能亚马逊广告amazon
在亚马逊广告投放领域,关键词的选择是影响广告效果的核心要素之一。一个精准的关键词策略不仅能够提升广告的曝光度,还能确保产品能够被真正的目标受众看到,从而实现更高的转化率。然而,关键词的筛选并不是一个简单的操作,它需要结合数据分析、市场趋势和消费者行为模式进行科学的规划。一、关键词筛选的必要性:为什么精准匹配如此重要?1.提升广告投放的精准度关键词的精准度决定了广告是否能够投放给真正有购买意愿的用户
- 【数据分析】抓包工具的定义常见类型分类使用场景及注意事项
抓包工具的定义常见类型分类使用场景及注意事项-CSDN直播抓包工具的定义常见类型分类使用场景及注意事项抓包工具的定义常见类型分类使用场景及注意事项抓包工具概述抓包工具顾名思义是一种用于捕获并分析网络数据包的软件或硬件工具它能够在数据传输过程中截取并记录网络流量让用户能够深入理解并排查网络问题这类工具的用途广泛从网络安全测试到应用程序调试都离不开抓包工具的帮助在众多的抓包工具中WiresharkFi
- 构建高效的物流车辆定位管理系统
体制教科书
本文还有配套的精品资源,点击获取简介:物流车辆定位管理系统利用信息技术提高物流效率和安全性。通过集成GPS技术进行实时车辆追踪和监控,它提供及时的货物运送和异常处理。系统的关键技术包括GPS车辆定位、C#编程语言、数据库管理、车辆管理、在途情况监控、预警与通知、数据分析与报告、用户界面设计、安全性与隐私保护以及系统集成。这些要素共同保障物流流程的高效、安全和智能化。1.物流车辆定位管理系统的应用与
- # 【GEE基础及工具)(一)】工欲善其事,必先利其器:借助Open Earth Engine实现影像高效处理及批量任务执行
遥感AI实战
GEE基础教程遥感GEE地理信息信息可视化sentinel
在遥感数据分析与处理工作中,海量影像数据的预处理(如去云、裁剪)和分析(如均值计算)是支撑后续研究的核心环节。而Sentinel-2影像作为常用的遥感数据源,常因云层遮挡、数据量大等问题增加处理难度。同时,在使用GoogleEarthEngine(GEE)处理数据时,“批量导出任务需手动逐个启动”的问题也会显著降低效率。本文将从“工具优化”和“数据处理”两个维度展开,详细介绍如何通过GEE完成Se
- Navicat 全面支持金仓数据库 KingbaseES,为金仓生态圈注入新动能
Navicat中国
Navicat17焕新上市Navicat免费版数据库
近日,我们宣布Navicat系列产品全面支持中电科金仓(北京)科技股份有限公司旗下金仓数据库管理系统KingbaseES。KingbaseES是面向全行业、全客户关键应用的企业级大型通用融合数据库产品,适用于事务处理类应用、数据分析类应用、海量时序数据采集检索类应用、要求苛刻的互联网等应用场景。这次合作,不仅是Navicat在数据库管理领域的又一重要里程碑,更凭借卓越的技术为金仓数据库的生态注入新
- 智慧施工:AI技术赋能建筑安全监测新纪元
开发AI智能应用,就下载InsCodeAIIDE,一键接入DeepSeek-R1满血版大模型!智慧施工:AI技术赋能建筑安全监测新纪元在现代建筑行业中,施工安全始终是核心关注点之一。随着科技的飞速发展,人工智能(AI)和大数据分析逐渐成为提升施工安全的重要工具。本文将探讨如何利用智能化软件和大模型API来构建高效的施工安全监测系统,并介绍一款强大的开发工具——InsCodeAIIDE的应用场景及其
- 如何用Python才能进行数据分析?_运用pycharm做数据分析的步骤
2401_84254530
python数据分析pycharm
数据分析流程Python是数据分析利器,掌握了Python的编程基础后,就可以逐渐进入数据分析。一个完整的数据分析项目大致可分为以下五个流程:数据获取→数据存储→数据预处理→建模与分析→可视化分析1)数据获取一般有数据分析师岗位需求的公司都会有自己的数据库,数据分析师可以通过SQL查询语句来获取数据库中想要数据。Python已经具有连接sqlserver、mysql、orcale等主流数据库的接口
- 数据挖掘算法:KNN、SVM、决策树详解
大力出奇迹985
数据挖掘算法支持向量机
本文将详细解析数据挖掘领域中常用的三种经典算法:KNN(K近邻算法)、SVM(支持向量机)和决策树。首先分别阐述每种算法的核心原理、实现步骤,再分析它们的优缺点及适用场景,最后对这三种算法进行综合对比与总结。通过本文,读者能全面了解这三种算法的特性,为实际数据挖掘任务中算法的选择提供参考,助力提升数据处理与分析的效率和准确性。在当今信息爆炸的时代,数据挖掘技术在各行各业发挥着至关重要的作用,而算法
- IoTDB智能分析节点AINode:时序数据分析的新引擎
时序数据说
iotdb数据分析数据挖掘时序数据库数据库大数据ai
在大数据与物联网的驱动下,时序数据处理需求激增,如何高效存储、管理并实时分析海量时序数据成为技术挑战。作为专为时序数据设计的数据库,IoTDB通过引入智能分析节点(AINode),将机器学习能力原生集成到数据库中,实现了“数据存储-分析-决策”的一体化闭环。本文将深入解析AINode的核心功能、技术优势及实际应用场景。AINode:IoTDB的智能分析引擎AINode是IoTDB推出的第三种内生节
- Python【一】Python全方位知识指南
程序员_CLUB
python开发语言
目录背景:为什么Python成为开发者必备技能?一、Python是什么?二、Python能做什么?六大核心应用场景1.自动化办公2.网络爬虫3.数据分析三、零基础入门Python:环境搭建与学习路径1.环境搭建(Windows/Mac详细步骤)2.基础语法速成(7天掌握)四、实战项目推荐(*****)五、学习建议与避坑指南(新手常见错误)六、总结:**背景:
- 有人考过CDA数据分析师二级吗?
cda2024
数据分析数据挖掘mysql
一、引言在当今数字化浪潮席卷各个行业的时代,数据成为了最宝贵的资产之一。无论是金融、电信、零售还是其他传统行业,都在积极寻求能够从海量数据中挖掘价值的专业人才。“有人考过CDA数据分析师二级吗?”这个问题不仅反映了人们对提升自身数据技能的渴望,也折射出市场对高水平数据分析师的需求日益增长。今天,我们就来聊聊这个话题。二、CDA数据分析师二级概述(一)认证的重要性首先得明确,CDA数据分析师二级可不
- Python爬虫实战:研究flanker相关技术
ylfhpy
爬虫项目实战python爬虫开发语言flanker
1.引言1.1研究背景与意义在当今信息爆炸的时代,互联网上的数据量呈现出指数级增长的趋势。如何从海量的网页数据中高效地获取有价值的信息,成为了一个重要的研究课题。网络爬虫作为一种自动获取网页内容的技术,能够帮助用户快速、准确地收集所需的信息,因此在信息检索、数据挖掘、舆情分析等领域得到了广泛的应用。Flanker技术是一种基于文本分析的信息提取技术,它能够从非结构化的文本中识别和提取出特定类型的信
- Python数据分析第一课:Anaconda的安装使用
二狗的编程之路
Python数据分析python数据分析开发语言
Python数据分析第一课:Anaconda的安装使用1.Anaconda是什么?Anaconda是一个便捷的获取包,并且对包和环境进行管理的虚拟环境工具,Anaconda包括了conda、Python在内的超过180多个包和依赖项简单来说,Anaconda是包管理器和环境管理器2.Anaconda从何而来?Anaconda包括了Python和conda,我们从这这两个部分来叙述PythonPyt
- 数据分析概念和总结
小小少年Boy
参考:什么是数据分析?总结:决策=数据+分析数据分析的框架:明确分析目标、数据收集、数据清理、数据分析、数据报告、执行与反馈数据分析与数据挖掘,前者偏向于业务分析,后者偏向于数据库算法,借助数据来指导决策数据分析的框架1.首先是数据分析的目的性极强区别于数据挖掘的找关联、分类、聚类,数据分析更倾向于解决现实中的问题。我想解决什么问题?通过这次的分析能让我产生什么决策?比如是否在某个高校举办一场活动
- 深度评测:拼多多官方返利APP vs 其他返利平台,谁更胜一筹?
日常购物技巧呀
购物新宠儿!拼多多官方返利APP,引领智能返利新时代。随着科技的不断发展智能化已经成为了各个领域的发展趋势。在返利领域也不例外拼多多官方返利app凭借其强大的智能技术和创新能力正引领着智能返利新时代。这款app通过大数据分析用户行为习惯精准推送符合用户需求的商品和优惠信息。让你在享受智能化服务的同时也能获得更加精准的返利回报。在繁多的返利app中,高省app凭借其独特的优势脱颖而出,成为众多用户的
- 朋友圈点赞也能造假?社交媒体数据欺诈识别的那些事
“朋友圈点赞也能造假?社交媒体数据欺诈识别的那些事”咱们先聊个现实点的:你刷朋友圈、微博、抖音的时候,有没有发现一些账号的点赞数、评论数特别整齐划一?要么都是那种无意义的“支持”“666”,要么一夜之间视频播放量暴涨,看着就不太对劲。其实,这背后很可能就是数据欺诈,而且这种现象在社交媒体上特别常见。作为一个做大数据分析的人,我最直观的感受就是:社交媒体上的数据从来不是完全干净的,里面水分多得很。如
- 【Python】pandas.cut()函数的用法
pandas.cut()函数是一个非常有用的工具,用于将数值型数据按照指定的分箱或区间进行分割,从而将连续的数值变量转换为离散的类别变量。这在数据分析和机器学习的特征工程中尤其有用,因为它可以帮助揭示不同区间内的数据分布特征,或者简化模型的输入。基本用法pandas.cut()的基本语法如下:pandas.cut(x,bins,right=True,labels=None,retbins=Fals
- 基于Python的酒店订单数据分析与可视化实战
不若浮生一梦
python作业python数据分析开发语言
本文将通过一个酒店订单数据集,展示如何使用Python进行完整的数据分析流程,包括数据清洗、特征工程、探索性分析、可视化以及业务洞察,适合数据分析初学者或想通过项目提升数据思维的开发者。一、项目背景随着旅游业的迅速发展,酒店运营者越来越依赖数据分析来提升客户体验与优化收益管理。本项目基于某国际连锁酒店集团提供的真实订单数据,包含超过10万条记录,涵盖订单类型、顾客行为、取消情况等多个维度。目标是通
- 2025年最值得推荐的10款开源数据库管理工具全解析
ivwdcwso
运维与云原生开源数据库管理工具运维管理
在数据驱动的时代,数据库管理工具已成为开发者、数据分析师和运维工程师的必备利器。随着技术的快速发展,2025年的数据库管理工具市场涌现出许多强大而高效的开源解决方案。本文将为您详细介绍10款在2025年表现突出的开源数据库管理工具,帮助您选择最适合自己需求的工具。一、2025年数据库管理工具的新趋势在介绍具体工具前,让我们先了解2025年数据库管理工具的几个关键发展趋势:AI增强功能:越来越多的工
- Python Pandas.cut函数解析与实战教程
皓月照山川
pandaspythonpandas开发语言
PythonPandas.cut函数解析与实战教程摘要pandas.cut是数据分析工具库Pandas中一个极其强大且常用的函数。它的核心功能是将连续的数值型数据根据指定的间断点(bins)进行分割,转换成离散化的区间类别(categoricaldata)。这种操作在数据预处理、特征工程和数据可视化中至关重要,例如,将用户的年龄分段、将考试分数评级、或将销售额划分为不同的等级。本文章将从基础用法到
- 实践篇:构建基于LLM与本地Pandas的混合式数据分析引擎
超人阿亚
pandas数据分析数据挖掘
公众号:dify实验室基于LLMOps平台-Dify的一站式学习平台。包含不限于:Dify工作流案例、DSL文件分享、模型接入、Dify交流讨论等各类资源分享。在上一篇《思路探索:当大型语言模型遇见数据分析的现实挑战》中,我们阐述了团队确立的技术路线:利用大型语言模型(LLM)作为自然语言到代码的“翻译器”,并结合PythonPandas库作为后端的高性能“计算核心”。本文将从工程实践的角度,详细
- 【tower】Rust tower库原理详解以及axum限流实战
景天科技苑
Rust语言通关之路rust开发语言后端towerrusttoweraxum限流
✨✨欢迎大家来到景天科技苑✨✨养成好习惯,先赞后看哦~作者简介:景天科技苑《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。《博客》:Rust开发,Python全栈,Golang开发,云原生开发,PyQt5和Tkinter桌面开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理