- Doris与StarRocks关系解析:大数据技术演进
AI大数据智能洞察
大数据与AI人工智能大数据AI应用大数据ai
Doris与StarRocks关系解析:大数据技术演进关键词:Doris,StarRocks,大数据分析,OLAP,MPP架构,开源技术,数据仓库摘要:在大数据爆炸的时代,我们每天都在产生海量数据——从手机里的聊天记录到电商平台的购物清单,从社交媒体的点赞评论到智能手表的健康数据。如何从这些数据中快速找到有价值的信息,就像在图书馆的百万本书中迅速找到你需要的那一本?OLAP(在线分析处理)系统就是
- AWS架构师
咸鱼一条_o.0?!
aws云计算
AWS架构师部分定义S3(S3存储桶)EC2弹性计算云EBS弹性块存储SNAPSHOT快照AMI:EC2镜像ELB弹性负载均衡器EFSDATABASEDATAWAREHOUSEOLTPOLAPElastiCacheVPCRoute53部分定义UserGroup:用户组下的用户继承该用户组所有权限Policy:Jasonformat:类似文字描述,指定object的类型。给user和group提供权
- ClickHouse高频面试题
野老杂谈
数据库
ClickHouse高频面试题1、简单介绍一下ClickHouse2、ClickHouse具有哪些特点3、ClickHouse作为一款高性能OLAP数据库,存在哪些不足4、ClickHouse有哪些表引擎5、介绍下Log系列表引擎应用场景共性特点不支持6、简单介绍下MergeTree系列引擎7、简单介绍下外部集成表引擎ODBCJDBCMySQLHDFSKafkaRabbitMQ8、ClickHou
- Java手动打印执行过的sql
GoodStudyAndDayDayUp
javasql开发语言
1.拦截器packagecom.xxx.platform.common.interceptor;importcom.baomidou.dynamic.datasource.toolkit.DynamicDataSourceContextHolder;importcom.xxx.platform.common.aop.OLAPQuery;importcom.xxx.platform.constant
- Flink ClickHouse 连接器:实现 Flink 与 ClickHouse 无缝对接
Edingbrugh.南空
大数据flinkflinkclickhouse大数据
引言在大数据处理领域,ApacheFlink是一款强大的流处理和批处理框架,而ClickHouse则是一个高性能的列式数据库,专为在线分析处理(OLAP)场景设计。FlinkClickHouse连接器为这两者之间搭建了一座桥梁,使得用户能够在Flink中方便地与ClickHouse数据库进行交互,实现数据的读写操作。本文将详细介绍FlinkClickHouse连接器的相关内容,包括其特点、使用方法
- ClickHouse【理论篇】01:什么是ClickHouse
ClickHouse是一款开源的列式数据库管理系统(Column-OrientedDBMS),专为高性能实时数据分析(OLAP,OnlineAnalyticalProcessing)场景设计。它由俄罗斯搜索引擎公司Yandex开发(2016年开源),目前由独立基金会ClickHouse,Inc.维护,广泛应用于大数据分析、日志处理、用户行为洞察等领域。一、核心定位:OLAP场景的“性能标杆”传统关
- ClickHouse【理论篇】02:ClickHouse架构和组件
做一个有趣的人Zz
ClickHouseclickhouse架构
ClickHouse的架构设计深度适配OLAP(在线分析处理)场景,通过列式存储、向量化执行、分布式分片与副本等核心技术,实现了对海量数据的高效分析与实时查询。以下从核心存储引擎、查询处理流程、分布式架构、元数据管理、复制与分片等维度详细解析其内部架构与关键组件。一、核心存储引擎:MergeTree系列ClickHouse的存储引擎是其性能的核心,其中MergeTree系列引擎(如MergeTre
- 产品背景知识——API、SDK、Library、Framework、Protocol
爱吃芝麻汤圆
#产品背景知识apisdk产品背景知识
产品背景知识——API、SDK、Library、Framework、ProtocolAPI和SDKAPI(ApplicationProgrammingInterface,应用程序编程接口)和SDK(SoftwareDevelopmentKit,软件开发工具包)是软件开发中的两个核心概念,它们既有区别又有紧密联系。以下是详细解释:1.API与SDK的区别特性APISDK定义一组预定义的规则和协议,用
- SQLite 数据库在大数据分析中的应用潜力
数据库管理艺术
数据库sqlite数据分析ai
SQLite数据库在大数据分析中的应用潜力关键词:SQLite、大数据分析、轻量级数据库、嵌入式数据库、数据仓库、OLAP、性能优化摘要:本文深入探讨了SQLite这一轻量级嵌入式数据库在大数据分析领域的应用潜力。我们将从SQLite的核心架构出发,分析其在大数据场景下的优势和限制,并通过实际案例展示如何通过优化策略和扩展技术使SQLite能够处理大规模数据集。文章包含性能对比测试、优化技巧和实际
- 高通 audio pal 配置文件
盼雨落,等风起
audio音视频
一、PAL配置文件解析1.mixer_paths.xml-硬件控制中枢核心作用:物理通路定义:建立Codec寄存器到音频端点的信号链路动态控制:运行时通过ALSAControlAPI(如amixerset"SpkrLeftPAVolume"25)实时调整参数平台适配:文件命名规则mixer_paths__.xml(如mixer_paths_sm8550-demo.xml)调试技巧:使用tinymi
- 实时数仓工具-SelectDB
清平乐的技术博客
实时数仓数据仓库
一、SelectDB简介官网:https://www.selectdb.com/1、ApacheDorisApacheDoris是一款采用MPP架构的实时分布式OLAP数据仓库,专注于高效的实时数据分析。Doris项目于2013年内部开发,2017年正式开源,目前在GitHub上获得了接近13,000星,全球已有超过5,000家企业采用,社区活跃度极高,累计贡献者超过650人,且曾连续数月在大数据
- 大数据领域 OLAP 的数据立方体增量更新
大数据洞察
大数据ai
大数据领域OLAP的数据立方体增量更新关键词:OLAP、数据立方体、增量更新、预计算、物化视图、ETL、大数据分析摘要:本文深入探讨大数据领域中OLAP数据立方体的增量更新技术。我们将从基本概念出发,详细分析数据立方体的结构和更新机制,介绍多种增量更新算法及其实现原理,并通过实际案例展示如何在分布式环境下高效维护数据立方体的时效性。文章还将讨论增量更新面临的挑战和未来发展方向,为大数据分析系统的设
- Clickhouse数据库的探索与安装
PerterTingle
华为云+Ubuntu操作系统springbootjava华为云数据库
以下是一个简洁的教程,指导你在Ubuntu系统上通过Docker下载并运行ClickHouse(一个开源的列存储数据库,专为在线分析处理OLAP设计),并确保其支持远程访问。教程基于官方文档和相关资源,适用于初学者。使用Docker部署ClickHouse教程前提条件Ubuntu系统(本教程以Ubuntu22.04为例)。已安装Docker和DockerCompose(若未安装,见下方步骤)。具有
- Flink SQL执行流程深度剖析:从SQL语句到分布式执行
Edingbrugh.南空
大数据flinkflinksql分布式
在大数据处理领域,FlinkSQL凭借其强大的处理能力和易用性,成为众多开发者的选择。与其他OLAP引擎类似,FlinkSQL的SQL执行流程大致都需要经过词法解析、语法解析、生成抽象语法树(AST)、校验以及生成逻辑执行计划等步骤。整体流程可笼统地概括为两大阶段:从SQL到Operation的转换,再从Operation到Transformation的转换,最终进入分布式执行阶段。接下来,我们将
- 数据库领域OLTP与OLAP的对比分析
数据库管理艺术
数据库ai
数据库领域OLTP与OLAP的对比分析关键词OLTP;OLAP;数据库;事务处理;数据分析摘要本文聚焦于数据库领域中OLTP(联机事务处理)与OLAP(联机分析处理)的对比分析。首先阐述两者的概念基础,包括领域背景、历史发展及问题空间定义。接着构建理论框架,从第一性原理推导其特性。在架构设计上,详细剖析系统分解与组件交互。实现机制部分进行算法复杂度等分析。探讨实际应用中的实施策略等内容。还考量高级
- 大数据领域 OLAP 的并发处理能力优化
大数据洞察
大数据ai
大数据领域OLAP的并发处理能力优化关键词:大数据、OLAP、并发处理能力、优化策略、数据架构摘要:在大数据时代,联机分析处理(OLAP)技术对于企业的决策支持和数据分析至关重要。然而,随着数据量的不断增长和用户并发请求的增加,OLAP的并发处理能力面临着巨大挑战。本文旨在深入探讨大数据领域OLAP并发处理能力的优化方法。首先介绍OLAP的背景知识,包括其目的、预期读者和文档结构等。接着阐述OLA
- 大数据领域 OLAP 的分布式查询执行计划优化
大数据洞察
大数据与AI人工智能大数据分布式ai
大数据领域OLAP的分布式查询执行计划优化关键词:OLAP、分布式查询、执行计划优化、查询引擎、并行计算、数据分片、成本模型摘要:本文深入探讨了大数据环境下OLAP系统的分布式查询执行计划优化技术。文章首先介绍了OLAP查询的基本概念和特点,然后详细分析了分布式环境下查询执行计划优化的核心挑战和关键技术,包括查询重写、并行执行策略、数据本地性优化等。接着通过具体算法和数学模型阐述了优化原理,并提供
- 数据库领域的秘密武器——物化视图
数据库管理艺术
数据库ai
物化视图:数据库性能优化的理论基石与工程实践关键词物化视图、预计算聚合、查询加速、存储换时间、数据库优化、一致性维护、OLAP加速摘要物化视图作为数据库领域的“秘密武器”,通过预计算和存储复杂查询结果,在OLAP(联机分析处理)、数据仓库等场景中实现了查询性能的指数级提升。本文从第一性原理出发,系统解析物化视图的理论基础、架构设计、实现机制与工程实践,覆盖从概念定义到未来演化的全生命周期。通过层次
- 硬核实战 | 3分钟Docker部署ClickHouse列存数据库
本文来自「大千AI助手」技术实战系列,专注用真话讲技术,拒绝过度包装。ClickHouse作为OLAP领域性能标杆,其列式存储引擎比传统数据库快100倍以上。本文将用Docker实战部署,并解析关键配置:安装# 拉取最新镜像(当前版本23.8)docker pull clickhouse/clickhouse-server# 运行容器(关键参数解析)docker run -d \ --name=
- 数据分析之OLTP vs OLAP
数据处理系统主要有两种基本方法:一种注重数据操作(增删查改),另一种注重商业智能数据分析。这两种系统是:联机事务处理(OLTP)联机分析处理(OLAP)PowerBI专为与OLAP系统兼容而构建,并未针对OLTP系统进行优化。OLTP:联机事务处理OLTP(OnlineTransactionProcessing)是一种实时处理数据的方式,主要用于支持日常的业务操作,比如如ATM提款、电子商务订单、
- DuckDB + Spring Boot + MyBatis 构建高性能本地数据分析引擎
java干货
springbootmybatis数据分析
DuckDB是一款令人兴奋的内嵌式分析型数据库(OLAP),它为本地数据分析和处理带来了前所未有的便捷与高效。它无需外部服务器,可以直接在应用程序进程中运行,并提供了强大的SQL支持和列式存储带来的高性能。什么是DuckDB?DuckDB被誉为“数据科学领域的SQLite”,是一个开源的、专为分析查询设计的嵌入式数据库管理系统。它与传统的行式数据库(如SQLite,主要用于事务处理OLTP)不同,
- Doris实践——叮咚买菜基于OLAP引擎的应用实践
吵吵叭火
大数据大数据数据仓库
目录前言一、业务需求二、选型与对比三、架构体系四、应用实践4.1实时数据分析4.2B端业务查询取数4.3标签系统4.4BI看板4.5OLAP多维分析五、优化经验六、总结原文大佬介绍的这篇Doris数仓建设实践有借鉴意义的,这些摘抄下来用作沉淀学习。如有侵权请告知~前言随着叮咚买菜业务的发展,不同的业务场景对数据分析提出了不同的需求,希望引入一款实时OLAP数据库,构建一个灵活的多维实时查询和分析的
- Apache Doris实时分析数据仓库的快速入门
AWsggdrg
apache数据仓库知识图谱python
ApacheDoris是一个现代化的数据仓库,专为实时分析设计。它能够在大规模数据上快速进行分析,非常适合需要快速响应的业务场景。Doris通常被分类为OLAP数据库,并且在ClickBench(一个面向分析型数据库系统的基准测试)中表现出色。得益于其高效的向量化执行引擎,Doris也可以用作快速的向量数据库。1.技术背景介绍ApacheDoris旨在解决传统数据仓库在实时分析中的性能瓶颈问题。传
- Greenplum:PB级数据分析的分布式引擎,揭开MPP架构的终极武器
茶本无香
数据库数据分析分布式架构
一、Greenplum是谁?——定位与诞生背景核心定位:基于PostgreSQL的开源分布式分析型数据库(OLAP),专为海量数据分析设计,支撑PB级数据仓库、商业智能(BI)和实时决策系统。诞生背景:数据爆炸时代:2000年代初,传统数据库(如OracleRAC)面临海量数据时扩展性差、成本高的问题。分布式计算革命:受GoogleGFS和MapReduce论文启发,Greenplum采用MPP(
- GaussDB高性能之道:从架构设计到实战优化
喜酱的探春
gaussdb
GaussDB高性能之道:从架构设计到实战优化引言在金融高频交易、物联网实时分析、电商秒杀等场景中,数据库性能直接决定业务成败。华为云GaussDB通过分布式并行架构、智能资源调度与深度引擎优化,实现了每秒百万级事务处理(100万TPS)、毫秒级响应(OLAP查询延迟10万)+RDMA网络;网络配置:25Gbps网卡+无损以太网(RoCEv2)。四、典型场景性能突破金融高频交易场景需求:支持每秒5
- ClickHouse与Presto对比:OLAP引擎选型指南
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶clickhouse网络ai
ClickHouse与Presto对比:OLAP引擎选型指南关键词:ClickHouse、Presto、OLAP引擎、选型指南、数据分析摘要:本文旨在为读者提供一份全面的ClickHouse与Presto对比的OLAP引擎选型指南。通过对这两款流行的OLAP引擎的核心概念、算法原理、数学模型、实际应用场景等多方面进行深入分析,并结合项目实战案例和代码解读,帮助读者了解它们各自的特点和优势。同时,还
- 万字详解:分布式计算系统 OLAP 引擎添加事务管理功能技术方案原理和源代码实现详细指南
AI天才研究院
计算OLAP分布式事务计算引擎ClickHouse
分布式计算系统OLAP引擎添加事务管理功能技术方案详解一、概述OLAP(在线分析处理)引擎通常专注于高性能的查询分析能力,而传统的事务管理功能更多出现在OLTP(在线事务处理)系统中。随着现代数据分析需求的演进,为OLAP引擎添加事务管理功能已成为一个重要趋势,能够实现分析型应用中的ACID保证。本文将详细探讨在分布式OLAP引擎中实现事务管理的技术方案,包括原理、架构设计和源代码实现。二、事务管
- ClickHouse性能优化技术深度解析与实践指南
weixin_30777913
数据库clickhouse性能优化架构
作为面向OLAP场景的列式数据库,ClickHouse凭借其卓越的查询性能和大数据吞吐能力广受青睐。但要充分发挥其潜力,必须深入理解其架构特性并实施针对性优化。本文综合官方文档与最佳实践,系统阐述ClickHouse性能优化的核心技术、技巧与实践策略。所有优化都应基于实际业务场景,通过EXPLAIN和ANALYZE工具验证优化效果,避免过度优化。一、表设计与存储优化1.1主键与索引设计稀疏主索引:
- MPP之Clickhouse
james二次元
大数据数据库MPPclickhouseMPP数据库OLAP列式数据库时序数据
ClickHouse:列式数据库概述ClickHouse是一款高性能的开源列式数据库管理系统(DBMS),由俄罗斯的Yandex公司开发,专为在线分析处理(OLAP)设计。它以极高的查询性能、水平可扩展性和高压缩率著称,适合大规模数据的实时分析。ClickHouse可以在数十亿行数据中实现亚秒级的查询性能,广泛应用于互联网、金融、电信等行业的数据分析场景。1.基本概念列式存储:ClickHouse
- 数仓开发面试题汇总-数据建模&数据治理
话数Science
1024程序员节大数据
1.如何建设数仓,如何构建主题域数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。可以这样理解:数据仓库对异构数据源进行集成,集成后按照主题进行了重组,并包含历史数据,且不再修改。如果对数据仓库还不够理解,可以先搞清楚关系型数据库与数据仓库的区别,OLTP和OLAP的区别等。如何建设数仓,技术方案选型上有很多选择:云服务/自建、流处理/批处理、MPP/Hado
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc