OpenCV2简单的特征匹配

特征的匹配大致可以分为3个步骤:

  1. 特征的提取
  2. 计算特征向量
  3. 特征匹配

对于3个步骤,在OpenCV2中都进行了封装。所有的特征提取方法都实现FeatureDetector接口,DescriptorExtractor接口则封装了对特征向量(特征描述符)的提取,而所有特征向量的匹配都继承了DescriptorMatcher接口。

简单的特征匹配

int main()

{

    const string imgName1 = "x://image//01.jpg";

    const string imgName2 = "x://image//02.jpg";



    Mat img1 = imread(imgName1);

    Mat img2 = imread(imgName2);



    if (!img1.data || !img2.data)

        return -1;



    //step1: Detect the keypoints using SURF Detector

    int minHessian = 400;



    SurfFeatureDetector detector(minHessian);



    vector<KeyPoint> keypoints1, keypoints2;



    detector.detect(img1, keypoints1);

    detector.detect(img2, keypoints2);



    //step2: Calculate descriptors (feature vectors)

    SurfDescriptorExtractor extractor;

    Mat descriptors1, descriptors2;

    extractor.compute(img1, keypoints1, descriptors1);

    extractor.compute(img2, keypoints2, descriptors2);



    //step3:Matching descriptor vectors with a brute force matcher

    BFMatcher matcher(NORM_L2);

    vector<DMatch> matches;

    matcher.match(descriptors1, descriptors2,matches);



    //Draw matches

    Mat imgMatches;

    drawMatches(img1, keypoints1, img2, keypoints2, matches, imgMatches);



    namedWindow("Matches");

    imshow("Matches", imgMatches);



    waitKey();



    return 0;

}

 

  1. 实例化了一个特征提取器SurfFeatureDetector,其构造函数参数(minHessian)用来平衡提取到的特征点的数量和特征提取的稳定性的,对于不同的特征提取器改参数具有不同的含义和取值范围。
  2. 对得到的特征点提取特征向量(特征描述符)
  3. 匹配,上面代码使用了暴力匹配的方法,最后的匹配结果保存在vector<DMatch>中。

DMatch用来保存匹配后的结果

 

struct DMatch

{         //三个构造函数

    DMatch() :

    queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(std::numeric_limits<float>::max()) {}

    DMatch(int  _queryIdx, int  _trainIdx, float  _distance) :

        queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {}

    DMatch(int  _queryIdx, int  _trainIdx, int  _imgIdx, float  _distance) : queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {}

    int queryIdx;  //此匹配对应的查询图像的特征描述子索引

    int trainIdx;   //此匹配对应的训练(模板)图像的特征描述子索引

    int imgIdx;    //训练图像的索引(若有多个)

    float distance;  //两个特征向量之间的欧氏距离,越小表明匹配度越高。

    bool operator < (const DMatch &m) const;

};

 

然后使用drawMatches方法可以匹配后的结构保存为Mat

image

你可能感兴趣的:(opencv)