- 250714脑电分析课题进展——基础知识扩展与论文阅读
脑电分析课题进展目录脑电分析课题进展一、概要二、论文阅读(一)内容(二)创新(三)不足三、书籍阅读四、基础知识学习(一)机器学习(二)代码能力五、总结与展望一、概要本周课题进展聚焦于论文与书籍阅读,以及基础知识的学习(包括机器学习与PyTorch的代码学习)论文阅读以毕明川学姐的学位论文为参考《基于EEG的冥想状态数据挖掘研究》书籍阅读以李颖洁的《脑电信号分析方法及其应用》第一章内容为重点机器学习
- 生物反馈与多动症——365读书会第45天
萍心而论
目前对于多动症治疗的宣传中,有大量关于脑电生物反馈或神经反馈的比例。这基于多动症的孩子的脑电活动比较低,教他们如何增力活动也许可以帮助他们缓解多动症症状。那么,是不是直接刺激他大脑的某一部分,提高它这一部分功能就可以了呢?这是我们经常思考的一个问题。比如说多动症行为比较多,我让他行为抑制下来;多巴胺分泌水平反应不足,让他反应上来就可以了吗?自30年前科学家开始便开始用EEG(脑电图)生物反馈来测试
- 第二届睡眠脑电专题班(直播:2023.5.13~5.14)
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★睡眠占据了人生命的三分之一,充足良好的睡眠也是健康不可或缺的条件之一。为什么有的人睡眠质量如此高?为什么有的人饱受
- 医疗AI与融合数据库的整合:挑战、架构与未来展望(上)
Loving_enjoy
计算机学科论文创新点机器学习facebook课程设计经验分享
在医疗AI爆发式增长的今天,单一数据库已无法满足多模态医疗数据的处理需求。本文将揭秘医疗融合数据库的核心架构,通过真实代码示例展示如何破解医疗数据整合的世纪难题。###一、医疗数据的"四维挑战"####1.多模态数据洪流```python#典型患者数据组成patient_data={"时序数据":"ECG/EEG波形(1000Hz采样)","影像数据":"CT/MRI(单次扫描2GB+)","文本
- ER综述论文阅读-Emotion recognition in EEG signals using deep learning methods: A review
今天早睡了
情绪识别EmotionRecognition论文阅读深度学习人工智能
EmotionrecognitioninEEGsignalsusingdeeplearningmethods:AreviewQ1期刊,2023论文链接:https://d1wqtxts1xzle7.cloudfront.net/105887899/emotionreview-libre.pdf?1695460941=&response-content-disposition=inline%3B+f
- 脑电分析入门指南:信号处理、特征提取与机器学习
Ao000000
信号处理机器学习人工智能
脑电分析入门指南一、为什么要研究脑电1.课题目标(解决什么问题)2.输入与输出二、脑电分析的整体流程三、每一步详解1.数据采集2.预处理3.特征提取4.特征选择/降维5.分类与识别四、研究过程中遇到的挑战与解决方法五、学习感受一、为什么要研究脑电1.课题目标(解决什么问题)本课题旨在通过对脑电(EEG)的采集与分析,提取有用的神经信息,实现对某类脑状或行为的识别/预测/评估。例如:情绪识别、疾病诊
- 脑机新手指南(十七)EEG-ExPy 新手入门教程(上篇):基础概念与环境搭建
Brduino脑机接口技术答疑
脑机新手指南新手入门算法脑机接口
一、EEG-ExPy是什么?EEG-ExPy是一个基于Python的开源工具包,专为脑电(EEG)实验设计、数据采集和实时分析而开发。它的核心优势在于低门槛易用性和模块化设计,即使是没有编程基础的新手,也能通过简单的代码或图形界面快速搭建EEG实验流程。其功能覆盖:1.自定义实验范式设计(如视觉刺激、运动想象任务)2.实时EEG信号采集与预处理3.简单的脑机接口(BCI)应用开发4.实验数据的存储
- 脑机新手指南(十二):BciPy 脑机接口工具入门(下篇):核心功能与实践应用
Brduino脑机接口技术答疑
脑机新手指南人工智能算法机器学习
一、BciPy核心模块深度解析(一)信号采集与处理模块(acquisition&signal)1.信号采集流程BciPy通过LabStreamingLayer(LSL)协议实现多设备同步采集:frombcipy.acquisitionimportLslStreamer # 初始化LSL流采集器 streamer=LslStreamer() streamer.connect() # 连接到EEG设
- 脑机新手指南(二十一)基于 Brainstorm 的 MEG/EEG 数据分析(上篇)
Brduino脑机接口技术答疑
脑机新手指南数据分析数据挖掘
一、脑机接口与神经电生理技术概述脑机接口(Brain-ComputerInterface,BCI)是一种在大脑与外部设备之间建立直接通信通道的技术,它通过采集和分析大脑信号来实现对设备的控制或信息的输出。神经电生理信号作为脑机接口的重要数据来源,主要包括以下几种类型:MEG(脑磁图):通过测量大脑神经元电活动产生的磁场变化来反映脑功能,具有极高的时间分辨率。EEG(脑电图):通过头皮电极记录大脑皮
- InteraXon 与 Muse 脑波头环:开启脑机交互与脑健康新时代
Scivaro_陈耀栋
InteraXon脑机接口人因工程人工智能EEGInteraXonMuse脑电
作者:科采通|CSDN专栏一、公司简介InteraXon成立于2009年,总部位于加拿大多伦多,是一家专注于神经科技(Neurotechnology)的创新企业。其旗舰产品Muse脑波头环,是一款面向普通消费者和科研人员的脑电(EEG)设备,致力于通过脑机接口(BCI)技术帮助用户提升认知功能、减轻压力和改善睡眠。InteraXon由神经科学家、工程师和设计师组成的小团队起步,现已发展为拥有全球用
- matlab 频谱图例子_做EEG频谱分析,看这一篇文章就够了!
weixin_39985286
matlab频谱图例子
所谓频谱分析,又称为功率谱分析或者功率谱密度(PowerSpectralDensity,PSD)分析,实际就是通过一定方法求解信号的功率power随着频率变化曲线。笔者在这里对目前常用的频谱分析方法做一个总结,并重点介绍目前EEG分析中最常用的频谱分析方法,并给出相应的Matlab程序。1.频谱分析的方法有哪些?目前来说,功率谱分析的方法大致可以分为两大类:第一类是经典的功率谱计算方法,第二类是现
- EEG分类-Alpha band power
闪电科创
算法人工智能深度学习EEG脑电信号
在脑电图(EEG)信号处理的背景下,alpha波段功率(AlphaBandPower)是一个非常重要的特征,广泛应用于认知神经科学、临床诊断、情感分析以及脑机接口(BCI)等领域。接下来,我将详细介绍alpha波段功率的定义、特性、计算方法以及在脑电图分析中的应用。1.Alpha波段的定义Alpha波指的是EEG信号中的一个频带,通常定义为8到13赫兹(Hz)的频率范围。在脑电图中,alpha波是
- Pyeeg模块部分功能介绍
脑电情绪识别
脑电情绪识别python神经网络深度学习pycharm
1.pyeeg简单介绍PyEEG是一个Python模块(即函数库),用于提取EEG(脑电)特征。正在添加更多功能。它包含构建用于特征提取的数据的函数,例如从给定的时间序列构建嵌入序列。它还能够将功能导出为svmlight格式,以便调用机器学习及深度学习工具。2.部分函数介绍1.pyeeg.ap_entropy(X,M,R)pyeeg.ap_entropy(X, M, R)计算时间序列X的近似熵(A
- EEG分类 - Theta 频带 power
闪电科创
EEG脑电信号处理分类数据挖掘人工智能EEG脑电信号
在EEG(脑电图)信号处理的背景下,theta波段功率(ThetaBandPower)是一个重要的特征,广泛应用于认知、神经科学和临床监测等领域。接下来,我将详细介绍theta波段功率的定义、特性、计算方法以及在脑电图分析中的应用。1.Theta波段的定义Theta波是EEG信号的一个频带,通常定义为4到8赫兹(Hz)的频率范围。这一波段的脑电活动与许多认知功能和生理状态相关,尤其是与放松、轻度睡
- 文献调研[eeg溯源的深度学习方法](过程记录)
我要学脑机
#神经生物学原理深度学习人工智能
文章目录问题AI回答关键词组合搜索方式说明限定字段**1.AllFields(所有字段)****2.EEGsourcerecon(EEG源重建)****3.Title(标题)****4.Author(作者)****5.PublicationTitles(期刊/会议名称)****6.YearPublished(发表年份)****7.Affiliation(机构)****8.FundingAgency
- 脑机新手指南(五):开源代码库EEGsynth的学习(上)
Brduino脑机接口技术答疑
脑机新手指南python脑机接口开源
一.什么是EEGsynth1.EEGsynth的定义EEGsynth是一个基于Python的开源代码库,它的主要目的是将实时脑电图(EEG)数据转换为声音、音乐和视觉效果。该项目不用于诊断性研究或临床应用,也没有提供用于离线分析的图形用户界面。相反,它是一个跨学科的协作项目,旨在将程序员、音乐家、艺术家、神经科学家和开发者聚集在一起,进行科学和艺术探索。2.项目特点开源与开放硬件:遵循开源和开放硬
- Brduino脑机连载(十八)脑电采集中眨眼、闭眼、咬牙等特殊动作在脑电波形中的体现
Brduino脑机接口技术答疑
算法
在脑电(EEG)信号采集与分析的过程中,除了我们所关注的大脑内在的认知、情绪等活动对应的脑电信号变化外,一些被试者的特殊动作,如眨眼、闭眼、咬牙等,也会在脑电波中留下明显的特征印记。了解这些特殊动作在脑电波中的具体体现,对于准确解读脑电信号、排除干扰以及进行相关的神经科学研究和临床诊断等都有着重要意义。今天我们详细探讨一下这个话题。一、眨眼动作在脑电波中的体现(一)眨眼的生理机制与脑电影响眨眼是一
- 时空网络动力学图谱分析完整解决方案
神经网络15044
python机器学习仿真机器学习人工智能深度学习
时空网络动力学图谱分析完整解决方案1.数据预处理与特征提取importnumpyasnpimportmneimportpandasaspdfromscipyimportsignal,statsimportantropyasantdefpreprocess_data(raw,l_freq=1,h_freq=40):"""预处理EEG数据"""raw.filter(l_freq,h_freq,fir_
- 蓝牙设备的名称与MAC地址及UUID
每个蓝牙设备都具有各自的地址和名称,他们之间通过唯一通过地址和名称进行数据交互。本文详细讲述了蓝牙设备的名称和地址的格式及作用。名称蓝牙设备具有各自的名称,通常为字母与数字的组合.如下图用nRFConnect连接蓝牙BLE设备显示的界面中,蓝牙设备的名称为EEG_20210910.该名称在NORDIC蓝牙开发程序工程代码的main.c文件中定义:#defineDEVICE_NAME"EEG_202
- 【SCI论文写作】机器学习与时间序列医疗健康预测——(EEG)的获取与预处理:Python 实现
LIUDAN'S WORLD
医学AIpython人工智能前端
当前时间:2025-05-29脑电图(Electroencephalography,EEG)作为一种非侵入性的神经生理监测技术,在医疗健康领域,尤其是在神经科学研究、疾病诊断(如癫痫、睡眠障碍)、脑机接口(BCI)等方面扮演着至关重要的角色。原始EEG信号通常包含复杂的生理信息,但也极易受到各种噪声和伪迹的污染,这为后续的数据分析和解读带来了巨大挑战。因此,对EEG数据进行系统有效的预处理是确保分
- 【SCI论文写作】机器学习与时间序列 脑电图(EEG)数据的机器学习预测模型:实现与优化
LIUDAN'S WORLD
医学AI机器学习人工智能
目录引言:解码脑电信号——机器学习的视角EEG状态监测任务与数据准备核心监测任务定义公开EEG数据集简介(示例与建议)输入模型的数据形态深度学习模型架构:洞察EEG时间序列的利器模型选型概述循环神经网络(RNN)及其变体(LSTM/GRU)详解RNN基础长短期记忆网络(LSTM)门控循环单元(GRU)Transformer模型详解(可选)CNN-LSTM/CNN-Transformer混合模型简介
- 基于支持向量机(SVM)的P300检测分类
jllllyuz
支持向量机分类机器学习
基于支持向量机(SVM)的P300检测分类MATLAB实现,包含数据预处理、特征提取和分类评估流程:%%P300检测分类完整流程(SVM实现)clc;clear;closeall;%%1.数据加载与模拟生成(实际应用需替换为真实数据)%生成模拟EEG数据(实际应加载真实数据)[sampleRate,numChannels,numTrials,trialLength]=deal(250,32,200
- 基于连接感知的实时困倦分类图神经网络
是Dream呀
计算机视觉神经网络分类神经网络数据挖掘
疲劳驾驶是导致交通事故的主要原因之一。脑电图(EEG)是一种直接从大脑活动中检测睡意的方法,已广泛用于实时检测驾驶员的睡意。最近的研究表明,使用基于脑电图数据构建的大脑连接图来预测困倦状态的巨大潜力。然而,传统的脑连接网络与下游预测任务无关。本文提出了一种使用自注意机制的连接感知图神经网络(CAGNN),该网络可以通过端到端训练生成与任务相关的连接网络。研究方法研究方法基于实时监测驾驶员的脑电活动
- 神经编译革命:如何用脑机接口直接编程量子计算机?
高峰君主
全栈开发量子计算
1.脑机接口如何对接量子计算?1.1脑电信号的捕获与解码脑机接口通过电极(EEG或植入式芯片)采集脑电波,提取特征信号(如α波、β波)。例如,以下Python代码模拟EEG信号处理:importnumpyasnpfromsklearn.decompositionimportFastICA#模拟4通道EEG信号(1000个采样点)eeg_data=np.random.randn(4,1000)#使用
- 科学与《易经》碰撞(37):脑电波与卦象状态的神经解码
1079986725
AI科学与《易经》碰撞科学与《易经》碰撞量子计算算法人工智能ai量子计算神经网络
一、理论基础:脑电节律与卦象的潜在关联《易经》卦象以阴阳爻的六维组合描述万物状态,而脑电波(EEG)通过不同频段振荡反映认知与情绪。两者在“动态平衡”与“多维度表征”上存在深层对应:频段-卦象映射假设:脑电频段神经状态对应卦象特征δ波(1-4Hz)深度睡眠、无意识坤卦(至静至柔)θ波(4-8Hz)冥想、潜意识活动艮卦(静中有动)α波(8-12Hz)放松清醒、灵感涌现离卦(明而中虚)β波(12-30
- MATLAB 脑电数据处理代码优化:从基础到并行计算的演变
自由的晚风
matlab算法人工智能脑机接口经验分享笔记SSVEP
文章目录前言版本1:基础的串行处理版本2:引入并行计算提高效率版本3:进一步优化的并行化处理总结前言在处理EEG(脑电图)数据时,我们常常需要对大量信号进行滤波、降噪等操作。随着数据规模的不断增大,传统的串行处理方法往往变得效率低下。为了提高计算速度,我们可以通过引入并行计算来大幅度提升处理效率。本文将通过三个版本的MATLAB代码演示如何优化EEG数据处理流程,从基础的串行处理到并行计算,再到进
- 论文阅读 EEG-TCNet
Plan-C-
论文阅读
EEG-TCNet:AnAccurateTemporalConvolutionalNetworkforEmbeddedMotor-ImageryBrain–MachineInterfaces1.Intrduction本文提出了一种新颖的时间卷积网络(TCN),在需要很少的可训练参数的情况下实现了出色的精度。EG-TCNET成功地推广了单个数据集,通过0.25的元效应优于MOABB的当前最新技术水平
- MATLAB环境下从信号中去除60Hz工频干扰噪声
Luis Li 的猫猫
matlab开发语言
从信号中去除60Hz工频干扰噪声是信号处理中的常见需求(尤其在生物医学、工业传感等领域)。1.工频干扰特性分析来源:电力线耦合(如50/60Hz交流电)、设备接地不良、电磁辐射。典型表现:信号频谱中在60Hz附近出现尖峰(可能伴随谐波,如120Hz、180Hz)。危害:掩盖真实信号特征(如ECG中的QRS波、EEG中的脑电节律)。2.硬件预处理(降低干扰根源)屏蔽与接地:使用屏蔽电缆和法拉第笼减少
- 第五届核磁机器学习班(训练营:2023.6.5~6.17)
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★基于血氧水平依赖的功能磁共振成像(fMRI)技术,利用其数据构建的功能性脑网络后,发现脑并不是一个单纯对外界刺激进行
- 第六届磁共振ASL(动脉自旋标记)数据处理班(直播:2023.7.1~7.2)
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★脑网络(cerebralnetwork)定义为:大脑空间位置不同的皮质区域通过结构或功能联系整合起来形成的网络模式。
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号