Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。
Python数据分析与挖掘技术概述
所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等。 数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升。数据挖掘技术可以帮助我们更好的发现事物之间的规律。所以我们可以利用数据挖掘技术可以帮助我们更好的发现事物之间的规律。比如发掘用户潜在需求,实现信息的个性化推送,发现疾病与病状甚至病与药物之间的规律等。
预先善其事必先利其器
我们首先聊聊数据分析的模块有哪些:
numpy 高效处理数据,提供数组支持,很多模块都依赖它,比如pandas,scipy,matplotlib都依赖他,所以这个模块都是基础。所以必须先安装numpy。
pandas 主要用于进行数据的采集与分析
scipy 主要进行数值计算。同时支持矩阵运算,并提供了很多高等数据处理功能,比如积分,微分方程求样等。
matplotlib 作图模块,结合其他数据分析模块,解决可视化问题
statsmodels 这个模块主要用于统计分析
Gensim 这个模块主要用于文本挖掘
sklearn,keras 前者机器学习,后者深度学习。
下面就说说这些模块的基础使用。
numpy模块安装与使用
有安装包可以关注我私信我哦~
安装: 下载地址是:www.lfd.uci.edu/~gohlke/pyt… 我这里下载的包是1.11.3版本,地址是:www.lfd.uci.edu/~gohlke/pyt… 下载好后,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl" 安装的numpy版本一定要是带mkl版本的,这样能够更好支持numpy
numpy简单使用
import numpy
x=numpy.array([11,22,33,4,5,6,7,]) #创建一维数组
x2=numpy.array([['asfas','asdfsdf','dfdf',11],['1iojasd','123',989012],["jhyfsdaeku","jhgsda"]]) #创建二维数组,注意是([])
x.sort() #排序,没有返回值的,修改原处的值,这里等于修改了X
x.max() # 最大值,对二维数组都管用
x.min() # 最小值,对二维数组都管用
x1=x[1:3] # 取区间,和python的列表没有区别
复制代码
生成随机数
主要使用numpy下的random方法。
#numpy.random.random_integers(最小值,最大值,个数) 获取的是正数
data = numpy.random.random_integers(1,20000,30) #生成整形随机数
#正态随机数 numpy.random.normal(均值,偏离值,个数) 偏离值决定了每个数之间的差 ,当偏离值大于开始值的时候,那么会产生负数的。
data1 = numpy.random.normal(3.2,29.2,10) # 生成浮点型且是正负数的随机数
复制代码
pandas
使用pip install pandas 即可
直接上代码: 下面看看pandas输出的结果, 这一行的数字第几列,第一列的数字是行数,定位一个通过第一行,第几列来定位:
print(b)
0 1 2 3
0 1 2 3 4.0
1 sdaf dsaf 18hd NaN
2 1463 None None NaN
复制代码
常用方法如下:
import pandas
a=pandas.Series([1,2,3,34,]) # 等于一维数组
b=pandas.DataFrame([[1,2,3,4,],["sdaf","dsaf","18hd"],[1463]]) # 二维数组
print(b.head()) # 默认取头部前5行,可以看源码得知
print(b.head(2)) # 直接传入参数,如我写的那样
print(b.tail()) # 默认取尾部前后5行
print(b.tail(1)) # 直接传入参数,如我写的那样
复制代码
下面看看pandas对数据的统计,下面就说说每一行的信息
# print(b.describe()) # 显示统计数据信息
3 # 3表示这个二维数组总共多少个元素
count 1.0 # 总数
mean 4.0 # 平均数
std NaN # 标准数
min 4.0 # 最小数
25% 4.0 # 分位数
50% 4.0 # 分位数
75% 4.0 # 分位数
max 4.0 # 最大值
复制代码
转置功能:把行数转换为列数,把列数转换为行数,如下所示:
print(b.T) # 转置
0 1 2
0 1 sdaf 1463
1 2 dsaf None
2 3 18hd None
3 4 NaN NaN
复制代码
通过pandas导入数据
pandas支持多种输入格式,我这里就简单罗列日常生活最常用的几种,对于更多的输入方式可以查看源码后者官网。
CSV文件
csv文件导入后显示输出的话,是按照csv文件默认的行输出的,有多少列就输出多少列,比如我有五列数据,那么它就在prinit输出结果的时候,就显示五列
csv_data = pandas.read_csv('F:\Learnning\CSDN-python大数据\hexun.csv')
print(csv_data)
复制代码
excel表格
依赖于xlrd模块,请安装它。 老样子,原滋原味的输出显示excel本来的结果,只不过在每一行的开头加上了一个行数
excel_data = pandas.read_excel('F:\Learnning\CSDN-python大数据\cxla.xls')
print(excel_data)
复制代码
读取SQL
依赖于PyMySQL,所以需要安装它。pandas把sql作为输入的时候,需要制定两个参数,第一个是sql语句,第二个是sql连接实例。
conn=pymysql.connect(host="127.0.0.1",user="root",passwd="root",db="test")
sql="select * from fortest"
e=pda.read_sql(sql,conn)
复制代码
读取HTML
依赖于lxml模块,请安装它。 对于HTTPS的网页,依赖于BeautifulSoup4,html5lib模块。 读取HTML只会读取HTML里的表格,也就是只读取标签包裹的内容.
html_data = pandas.read_html('F:\Learnning\CSDN-python大数据\shitman.html') # 读取本地html文件。
html_from_online = pandas.read_html('https://book.douban.com/') # 读取互联网的html文件
print(html_data)
print('html_from_online')
复制代码
显示的是时候是通过python的列表展示,同时添加了行与列的标识
读取txt文件
输出显示的时候同时添加了行与列的标识
text_data = pandas.read_table('F:\Learnning\CSDN-python大数据\dforsay.txt')
print(text_data)
复制代码
scipy
安装方法是先下载whl格式文件,然后通过pip install “包名”
安装。whl包下载地址是:www.lfd.uci.edu/~gohlke/pyt…
matplotlib 数据可视化分析
我们安装这个模块直接使用pip install即可。不需要提前下载whl后通过 pip install安装。
下面请看代码:
from matplotlib import pylab
import numpy
# 下面2行定义X轴,Y轴
x=[1,2,3,4,8]
y=[1,2,3,4,8]
# plot的方法是这样使用(x轴数据,y轴数据,展现形式)
pylab.plot(x,y) # 先把x,y轴的信息塞入pylab里面,再调用show方法来画图
pylab.show() # 这一步开始画图,默认是至线图
复制代码
画出的图是这样的:
下面说说修改图的样式
关于图形类型,有下面几种:
直线图(默认)
-
直线
-- 虚线
-. -.形式
: 细小虚线
关于颜色,有下面几种:
c-青色
r-红色
m-品红
g-绿色
b-蓝色
y-黄色
k-黑色
w-白色
关于形状,有下面几种:
s 方形
*
星形
p 五角形
我们还可以对图稍作修改,添加一些样式,下面修改圆点图为红色的点,代码如下:
pylab.plot(x,y,'or') # 添加O表示画散点图,r表示red
pylab.show()
复制代码
我们还可以画虚线图,代码如下所示:
pylab.plot(x,y,'r:')
pylab.show()
复制代码
还可以给图添加上标题,x,y轴的标签,代码如下所示
pylab.plot(x,y,'pr--') #p是图形为五角星,r为红色,--表示虚线
pylab.title('for learnning') # 图形标题
pylab.xlabel('args') # x轴标签
pylab.ylabel('salary') # y轴标签
pylab.xlim(2) # 从y轴的2开始做线
pylab.show()
复制代码
直方图
利用直方图能够很好的显示每一段的数据。下面使用随机数做一个直方图。
data1 = numpy.random.normal(5.0,4.0,10) # 正态随机数
pylab.hist(data1)
pylab.show()
复制代码
Y轴为出现的次数,X轴为这个数的值(或者是范围)
还可以指定直方图类型通过histtype参数:
图形区别语言无法描述很详细,大家可以自信尝试。
bar :is a traditional bar-type histogram. If multiple data are given the bars are aranged side by side.
barstacked :is a bar-type histogram where multiple data are stacked on top of each other.
step :generates a lineplot that is by default unfilled.
stepfilled :generates a lineplot that is by default filled.
举个例子:
sty=numpy.arange(1,30,2)
pylab.hist(data1,histtype='stepfilled')
pylab.show()
复制代码
子图功能
什么是子图功能呢?子图就是在一个大的画板里面能够显示多张小图,每个一小图为大画板的子图。 我们知道生成一个图是使用plot功能,子图就是subplog。代码操作如下:
#subplot(行,列,当前区域)
pylab.subplot(2,2,1) # 申明一个大图里面划分成4块(即2*2),子图使用第一个区域(坐标为x=1,y=1)
pylab.subplot(2,2,2) # 申明一个大图里面划分成4块(即2*2),子图使用第二个区域(坐标为x=2,y=2)
x1=[1,4,6,9]
x2=[3,21,33,43]
pylab.plot(x1,x2) # 这个plot表示把x,y轴数据塞入前一个子图中。我们可以在每一个子图后使用plot来塞入x,y轴的数据
pylab.subplot(2,1,2) # 申明一个大图里面划分成2块(即),子图使用第二个区域(坐标为x=1,y=2)
pylab.show()
复制代码
实践小例子
我们现在可以通过一堆数据来绘图,根据图能够很容易的发现异常。下面我们就通过一个csv文件来实践下,这个csv文件是某个网站的文章阅读数与评论数。 先说说这个csv的文件结构,第一列是序号,第二列是每篇文章的URL,第三列每篇文章的阅读数,第四列是每篇评论数。 我们的需求就是把评论数作为Y轴,阅读数作为X轴,所以我们需要获取第三列和第四列的数据。我们知道获取数据的方法是通过pandas的values方法来获取某一行的值,在对这一行的值做切片处理,获取下标为3(阅读数)和4(评论数)的值,但是,这里只是一行的值,我们需要是这个csv文件下的所有评论数和阅读数,那怎么办?聪明的你会说,我自定义2个列表,我遍历下这个csv文件,把阅读数和评论数分别添加到对应的列表里,这不就行了嘛。呵呵,其实有一个更快捷的方法,那么就是使用T转置方法,这样再通过values方法,就能直接获取这一评论数和阅读数了,此时在交给你matplotlib里的pylab方法来作图,那么就OK了。了解思路后,那么就写吧。
下面看看代码:
csv_data = pandas.read_csv('F:\Learnning\CSDN-python大数据\hexun.csv')
dt = csv_data.T # 装置下,把阅读数和评论数转为行
readers=dt.values[3]
comments = dt.values[4]
pylab.xlabel(u'reads')
pylab.ylabel(u'comments') # 打上标签
pylab.title(u"The Article's reads and comments")
pylab.plot(readers,comments,'ob')
pylab.show()
复制代码
你可能感兴趣的:(程序员,python,数据挖掘,数据分析,python)
python 读excel每行替换_Python脚本操作Excel实现批量替换功能
weixin_39646695
python 读excel每行替换
Python脚本操作Excel实现批量替换功能大家好,给大家分享下如何使用Python脚本操作Excel实现批量替换。使用的工具Openpyxl,一个处理excel的python库,处理excel,其实针对的就是WorkBook,Sheet,Cell这三个最根本的元素~明确需求原始excel如下我们的目标是把下面excel工作表的sheet1表页A列的内容“替换我吧”批量替换为B列的“我用来替换的
最新阿里四面面试真题46道:面试技巧+核心问题+面试心得
风平浪静如码
前言做技术的有一种资历,叫做通过了阿里的面试。这些阿里Java相关问题,都是之前通过不断优秀人才的铺垫总结的,先自己弄懂了再去阿里面试,不然就是去丢脸,被虐。希望对大家帮助,祝面试成功,有个更好的职业规划。一,阿里常见技术面1、微信红包怎么实现。2、海量数据分析。3、测试职位问的线程安全和非线程安全。4、HTTP2.0、thrift。5、面试电话沟通可能先让自我介绍。6、分布式事务一致性。7、ni
python笔记14介绍几个魔法方法
抢公主的大魔王
python python
python笔记14介绍几个魔法方法先声明一下各位大佬,这是我的笔记。如有错误,恳请指正。另外,感谢您的观看,谢谢啦!(1).__doc__输出对应的函数,类的说明文档print(print.__doc__)print(value,...,sep='',end='\n',file=sys.stdout,flush=False)Printsthevaluestoastream,ortosys.std
Anaconda 和 Miniconda:功能详解与选择建议
古月฿
python入门 python conda
Anaconda和Miniconda详细介绍一、Anaconda的详细介绍1.什么是Anaconda?Anaconda是一个开源的包管理和环境管理工具,在数据科学、机器学习以及科学计算领域发挥着关键作用。它以Python和R语言为基础,为用户精心准备了大量预装库和工具,极大地缩短了搭建数据科学环境的时间。对于那些想要快速开展数据分析、模型训练等工作的人员来说,Anaconda就像是一个一站式的“数
环境搭建 | Python + Anaconda / Miniconda + PyCharm 的安装、配置与使用
本文将分别介绍Python、Anaconda/Miniconda、PyCharm的安装、配置与使用,详细介绍Python环境搭建的全过程,涵盖Python、Pip、PythonLauncher、Anaconda、Miniconda、Pycharm等内容,以官方文档为参照,使用经验为补充,内容全面而详实。由于图片太多,就先贴一个无图简化版吧,详情请查看Python+Anaconda/Minicond
你竟然还在用克隆删除?Conda最新版rename命令全攻略!
曦紫沐
Python基础知识 conda 虚拟环境管理
文章摘要Conda虚拟环境管理终于迎来革命性升级!本文揭秘Conda4.9+版本新增的rename黑科技,彻底告别传统“克隆+删除”的繁琐操作。从命令解析到实战案例,手把手教你如何安全高效地重命名Python虚拟环境,附带版本检测、环境迁移、故障排查等进阶技巧,助你提升开发效率10倍!一、颠覆认知:Conda居然自带重命名功能?很多开发者仍停留在“Conda无法直接重命名环境”的认知阶段,实际上自
centos7安装配置 Anaconda3
Anaconda是一个用于科学计算的Python发行版,Anaconda于Python,相当于centos于linux。下载[root@testsrc]#mwgethttps://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.shBegintodownload:Anaconda3-5.2.0-L
Pandas:数据科学的超级瑞士军刀
科技林总
DeepSeek学AI 人工智能
**——从零基础到高效分析的进化指南**###**一、Pandas诞生:数据革命的救世主****2010年前的数据分析噩梦**:```python#传统Python处理表格数据data=[]forrowincsv_file:ifrow[3]>100androw[2]=="China":data.append(float(row[5])#代码冗长易错!```**核心痛点**:-Excel处理百万行崩
【Jupyter】个人开发常见命令
TIM老师
# Pycharm & VSCode python Jupyter
1.查看python版本importsysprint(sys.version)2.ipynb/py文件转换jupyternbconvert--topythonmy_file.ipynbipynb转换为mdjupyternbconvert--tomdmy_file.ipynbipynb转为htmljupyternbconvert--tohtmlmy_file.ipynbipython转换为pdfju
程序员必备:10 个提升代码质量的工具
大力出奇迹985
宠物
在软件开发过程中,代码质量对项目的成功起着决定性作用。高质量的代码不仅易于维护和扩展,还能有效降低成本并提升可靠性。本文精心挑选了10个程序员必备工具,助力提升代码质量。这些工具涵盖代码格式化、静态分析、代码审查、测试、性能优化、安全扫描、版本控制、依赖管理、代码生成以及文档生成等多个关键领域。通过使用它们,开发者能够高效地发现并解决代码中的潜在问题,遵循最佳实践,提升代码的可读性、可维护性与安全
用 Python 开发小游戏:零基础也能做出《贪吃蛇》
本文专为零基础学习者打造,详细介绍如何用Python开发经典小游戏《贪吃蛇》。无需复杂编程知识,从环境搭建到代码编写、功能实现,逐步讲解核心逻辑与操作。涵盖Pygame库的基础运用、游戏界面设计、蛇的移动与食物生成规则等,让新手能按步骤完成开发,同时融入SEO优化要点,帮助读者轻松入门Python游戏开发,体验从0到1做出游戏的乐趣。一、为什么选择用Python开发《贪吃蛇》对于零基础学习者来说,
基于Python的AI健康助手:开发与部署全攻略
AI算力网络与通信
AI算力网络与通信原理 AI人工智能大数据架构 python 人工智能 开发语言 ai
基于Python的AI健康助手:开发与部署全攻略关键词:Python、AI健康助手、机器学习、自然语言处理、Flask、部署、健康管理摘要:本文将详细介绍如何使用Python开发一个AI健康助手,从需求分析、技术选型到核心功能实现,再到最终部署上线的完整过程。我们将使用自然语言处理技术理解用户健康咨询,通过机器学习模型提供个性化建议,并展示如何用Flask框架构建Web应用接口。文章包含大量实际代
数据分析领域中AI人工智能的发展前景展望
AI大模型应用工坊
AI大模型开发实战 数据分析 人工智能 数据挖掘 ai
数据分析领域中AI人工智能的发展前景展望关键词:数据分析、人工智能、机器学习、深度学习、数据挖掘、预测分析、自动化摘要:本文深入探讨了人工智能在数据分析领域的发展现状和未来趋势。我们将从核心技术原理出发,分析AI如何改变传统数据分析范式,详细讲解机器学习算法在数据分析中的应用,并通过实际案例展示AI驱动的数据分析解决方案。文章还将探讨行业应用场景、工具生态以及未来发展面临的挑战和机遇,为数据分析师
AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
lesson20:Python函数的标注
你的电影很有趣
python 开发语言
目录引言:为什么函数标注是现代Python开发的必备技能一、函数标注的基础语法1.1参数与返回值标注1.2支持的标注类型1.3Python3.9+的重大改进:标准集合泛型二、高级标注技巧与最佳实践2.1复杂参数结构标注2.2函数类型与回调标注2.3变量注解与类型别名三、静态类型检查工具应用3.1mypy:最流行的类型检查器3.2Pyright与IDE集成3.3运行时类型验证四、函数标注的工程价值与
C#中的设计模式:构建更加优雅的代码
Envyᥫᩣᩚ
c# 开发语言
C#在面向对象编程(OOP)方面的强大支持,我们可以探讨“C#中的设计模式”。这不仅有助于理解如何更好地组织代码,还能提高代码的可维护性和可扩展性。引言设计模式是软件工程中经过实践验证的解决方案模板,它们提供了一种标准化的方法来解决常见的开发问题。对于使用C#进行开发的程序员来说,理解和应用这些模式可以帮助创建结构良好、易于维护和扩展的应用程序。本文将介绍几种常用的设计模式,并展示如何用C#实现它
Jupyter Notebook:数据科学的“瑞士军刀”
a小胡哦
机器学习基础 人工智能 机器学习
在数据科学的世界里,JupyterNotebook是一个不可或缺的工具,它就像是数据科学家手中的“瑞士军刀”,功能强大且灵活多变。今天,就让我们一起深入了解这个神奇的工具。一、JupyterNotebook是什么?JupyterNotebook是一个开源的Web应用程序,它允许你创建和共享包含实时代码、方程、可视化和解释性文本的文档。它支持多种编程语言,其中Python是最常用的语言之一。Jupy
Django学习笔记(一)
学习视频为:pythondjangoweb框架开发入门全套视频教程一、安装pipinstalldjango==****检查是否安装成功django.get_version()二、django新建项目操作1、新建一个项目django-adminstartprojectproject_name2、新建APPcdproject_namedjango-adminstartappApp注:一个project
Python 程序设计讲义(26):字符串的用法——字符的编码
睿思达DBA_WGX
Python 讲义 python 开发语言
Python程序设计讲义(26):字符串的用法——字符的编码目录Python程序设计讲义(26):字符串的用法——字符的编码一、字符的编码二、`ASCII`编码三、`Unicode`编码四、使用`ord()`函数查询一个字符对应的`Unicode`编码五、使用`chr()`函数查询一个`Unicode`编码对应的字符六、`Python`字符串的特征一、字符的编码计算机默认只能处理二进制数,而不能处
【Python】pypinyin-汉字拼音转换工具
鸟哥大大
Python python 自然语言处理
文章目录1.主要功能2.安装3.常用API3.1拼音风格3.2核心API3.2.1pypinyin.pinyin()3.2.2pypinyin.lazy_pinyin()3.2.3pypinyin.load_single_dict()3.2.4pypinyin.load_phrases_dict()3.2.5pypinyin.slug()3.3注册新的拼音风格4.基本用法4.1库导入4.2基本汉字
python编程第十四课:数据可视化
小小源助手
Python代码实例 信息可视化 python 开发语言
Python数据可视化:让数据“开口说话”在当今数据爆炸的时代,数据可视化已成为探索数据规律、传达数据信息的关键技术。Python凭借其丰富的第三方库,为数据可视化提供了强大而灵活的解决方案。本文将带你深入了解Matplotlib库的基础绘图、Seaborn库的高级可视化以及交互式可视化工具Plotly,帮助你通过图表清晰地展示数据背后的故事。一、Matplotlib库基础绘图Matplotlib
Python数据可视化:用代码绘制数据背后的故事
AAEllisonPang
Python 信息可视化 python 开发语言
引言:当数据会说话在数据爆炸的时代,可视化是解锁数据价值的金钥匙。Python凭借其丰富的可视化生态库,已成为数据科学家的首选工具。本文将带您从基础到高级,探索如何用Python将冰冷数字转化为引人入胜的视觉叙事。一、基础篇:二维可视化的艺术表达1.1Matplotlib:可视化领域的瑞士军刀importmatplotlib.pyplotaspltimportnumpyasnpx=np.linsp
python学习笔记(汇总)
朕的剑还未配妥
python学习笔记整理 python 学习 开发语言
文章目录一.基础知识二.python中的数据类型三.运算符四.程序的控制结构五.列表六.字典七.元组八.集合九.字符串十.函数十一.解决bug一.基础知识print函数字符串要加引号,数字可不加引号,如print(123.4)print('小谢')print("洛天依")还可输入表达式,如print(1+3)如果使用三引号,print打印的内容可不在同一行print("line1line2line
今年校招竞争真激烈
12_05
程序员满大街,都要找不到工作了。即使人工智能满大街,我也后悔当初没学机器学习,后悔当初没学Java。C++真难找工作。难道毕了业就失业吗?好担心!
PDF转Markdown - Python 实现方案与代码
Eiceblue
Python Python PDF pdf python 开发语言 vscode
PDF作为广泛使用的文档格式,转换为轻量级标记语言Markdown后,可无缝集成到技术文档、博客平台和版本控制系统中,提高内容的可编辑性和可访问性。本文将详细介绍如何使用国产Spire.PDFforPython库将PDF文档转换为Markdown格式。技术优势:精准保留原始文档结构(段落/列表/表格)完整提取文本和图像内容无需Adobe依赖的纯Python实现支持Linux/Windows/mac
使用Python和Gradio构建实时数据可视化工具
PythonAI编程架构实战家
信息可视化 python 开发语言 ai
使用Python和Gradio构建实时数据可视化工具关键词:Python、Gradio、数据可视化、实时数据、Web应用、交互式界面、数据科学摘要:本文将详细介绍如何使用Python和Gradio框架构建一个实时数据可视化工具。我们将从基础概念开始,逐步深入到核心算法实现,包括数据处理、可视化技术以及Gradio的交互式界面设计。通过实际项目案例,读者将学习如何创建一个功能完整、响应迅速的实时数据
Python Gradio:实现交互式图像编辑
PythonAI编程架构实战家
Python编程之道 python 开发语言 ai
PythonGradio:实现交互式图像编辑关键词:Python,Gradio,交互式图像编辑,计算机视觉,深度学习,图像处理,Web应用摘要:本文将深入探讨如何使用Python的Gradio库构建交互式图像编辑应用。我们将从基础概念开始,逐步介绍Gradio的核心功能,并通过实际代码示例展示如何实现各种图像处理功能。文章将涵盖图像滤镜应用、对象检测、风格迁移等高级功能,同时提供完整的项目实战案例
数据可视化:数据世界的直观呈现
卢政权1
信息可视化 数据分析 数据挖掘
在当今数字化浪潮中,数据呈爆炸式增长。数据可视化作为一种强大的技术手段,能够将复杂的数据转化为直观的图形、图表等形式,让数据背后的信息一目了然。无论是在商业决策、科学研究还是日常数据分析中,数据可视化都发挥着极为重要的作用。它帮助我们快速理解数据的分布、趋势、关联等特征,从而为进一步的分析和行动提供有力支持。接下来,我们将深入探讨数据可视化的奥秘,并通过代码示例展示其实际应用。一、Python数据
Python 程序设计讲义(25):循环结构——嵌套循环
Python程序设计讲义(25):循环结构——嵌套循环目录Python程序设计讲义(25):循环结构——嵌套循环一、嵌套循环的执行流程二、嵌套循环对应的几种情况1、内循环和外循环互不影响2、外循环迭代影响内循环的条件3、外循环迭代影响内循环的循环体嵌套循环是指在一个循环体中嵌套另一个循环。while循环中可以嵌入另一个while循环或for循环。反之,也可以在for循环中嵌入另一个for循环或wh
基于随机森林的白酒风味智能分类系统:从数据到洞察的完整实践
笙囧同学
python
作者:笙囧同学|中科院计算机大模型方向硕士|全栈开发爱好者座右铭:偷懒是人生进步的阶梯联系方式:
[email protected] 各大平台账号/公众号:笙囧同学前言大家好,我是笙囧同学!今天给大家分享一个超级有趣且技术含量爆表的项目——白酒风味智能分类系统。作为一个既爱技术又爱美酒的程序员,我花了大量时间研究如何用机器学习的方法来"品酒",让AI帮我们识别白酒的风味特征。这个项目融合了机器学习、数
JAVA中的Enum
周凡杨
java enum 枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
赶集网mysql开发36条军规
Bill_chen
mysql 业务架构设计 mysql调优 mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
Shell test命令
daizj
shell 字符串 test 数字 文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
XFire框架实现WebService(二)
周凡杨
java webservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
Runnable接口使用实例
bijian1013
java thread Runnable java多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
oracle里的extend详解
bijian1013
oracle 数据库 extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
java spring IOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
[科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
spring 定时器-两种方式
cuityang
spring quartz 定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
MongoDB更新文档 [四]
eksliang
mongodb Mongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
linux(Ubuntu)下常用命令备忘录1
macroli
linux 工作 ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
nodejs同步操作mysql
qiaolevip
学习永无止境 每天进步一点点 mysql nodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
一起学Hive系列文章
superlxw1234
hive Hive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,