问题:
We all love recursion! Don't we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1
w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1
分析:
这个问题直接递归写,效率相当低,当 a = 15, b = 15, c = 15,就得运行好几个小时才能出来结果。
这个问题其实应该是最简单的一种动态规划题目了,因为递推式已经给出了。而动态规划的难点
在于构造出递推式。当时熟悉用程序求解递推式,也是动态规划的三个步骤之一(最优解结
构分析、构造递推式、自底向上求解递推式[也可以递归的lookup式的])
此题只需要从底向上求解下面递推式就行:
w(a,b,c) = if a <= 0 or b <= 0 or c <= 0 return 1;
else if a > 20 or b > 20 or c > 20 return w(20, 20, 20);
else if a < b and b < c, then w(a, b, c) w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c);
else return w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
写一个方便的函数:
- int va(int i,int j,int k){
- if(i <= 0 || j <= 0 || k <= 0) return 1;
- return a[i][j][k];
- }
java 代码
可以减少不少判断。
自底向上求解:
cpp 代码:
- void computeW(){
- int i,j,k;
- for(i = 1; i < 21; i++)
- for(j = 1; j < 21; j++)
- for(k = 1; k < 21; k++){
- if(i < j && j < k)
- a[i][j][k] = va(i,j,k-1) + va(i,j-1,k-1) - va(i,j-1,k);
- else
- a[i][j][k] = va(i-1,j,k) + va(i-1,j-1,k) + va(i-1,j,k-1) - va(i-1,j-1,k-1);
- }
- }
都计算完了,输入什么就返回什么吧:
java 代码
- int w(int i,int j,int k){
- if(i <= 0 || j <= 0 || k <= 0)
- return 1;
- if(i > 20 || j > 20 || k > 20)
- return a[20][20][20];
- else
- return a[i][j][k];
- }
完整的代码:
cpp 代码
- #include<iostream></iostream>
- using namespace std;
- int a[21][21][21];
- int va(int i,int j,int k){
- if(i <= 0 || j <= 0 || k <= 0)
- return 1;
- return a[i][j][k];
- }
- void computeW(){
- int i,j,k;
- for(i = 1; i < 21; i++)
- for(j = 1; j < 21; j++)
- for(k = 1; k < 21; k++){
- if(i < j && j < k)
- a[i][j][k] = va(i,j,k-1) + va(i,j-1,k-1) - va(i,j-1,k);
- else
- a[i][j][k] = va(i-1,j,k) + va(i-1,j-1,k) + va(i-1,j,k-1) - va(i-1,j-1,k-1);
- }
- }
- int w(int i,int j,int k){
- if(i <= 0 || j <= 0 || k <= 0)
- return 1;
- if(i > 20 || j > 20 || k > 20)
- return a[20][20][20];
- else
- return a[i][j][k];
- }
- int main(){
- int i,j,k;
- computeW();
- while(cin>>i>>j>>k){
- if(i==-1 && j==-1 && k==-1)
- break;
- cout << "w(" << i << ", " << j << ", " << k <<")" <<" = " << w(i,j,k) << endl;
- }
- return 0;
- }