MapReduce:一个分布式运算程序的编程框架,是用户开发“基于 Hadoop 的数据分析
应用”的核心框架。
MapReduce 核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的
分布式运算程序,并发运行在一个 Hadoop 集群上。
1)MapReduce 易于编程
它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的 PC 机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得 MapReduce 编程变得非常流行。
2)良好的扩展性
当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。
3)高容错性
MapReduce 设计的初衷就是使程序能够部署在廉价的 PC 机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由 Hadoop 内部完成的。
4)适合 PB 级以上海量数据的离线处理
可以实现上千台服务器集群并发工作,提供数据处理能力。
1)不擅长实时计算
MapReduce 无法像 MySQL 一样,在毫秒或者秒级内返回结果。
2)不擅长流式计算
流式计算的输入数据是动态的,而 MapReduce 的输入数据集是静态的,不能动态变化。这是因为 MapReduce 自身的设计特点决定了数据源必须是静态的。
3)不擅长 DAG(有向无环图)计算
多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce 并不是不能做,而是使用后,每个 MapReduce 作业的输出结果都会写入到磁盘,会造成大量的磁盘 IO,导致性能非常的低下。
(1)分布式的运算程序往往需要分成至少 2 个阶段。
(2)第一个阶段的 MapTask 并发实例,完全并行运行,互不相干。
(3)第二个阶段的 ReduceTask 并发实例互不相干,但是他们的数据依赖于上一个阶段的所有 MapTask 并发实例的输出。
(4)MapReduce 编程模型只能包含一个 Map 阶段和一个 Reduce 阶段,如果用户的业务逻辑非常复杂,那就只能多个 MapReduce 程序,串行运行。
总结:分析 WordCount 数据流走向深入理解 MapReduce 核心思想。
一个完整的 MapReduce 程序在分布式运行时有三类实例进程:
(1)MrAppMaster:负责整个程序的过程调度及状态协调。
(2)MapTask:负责 Map 阶段的整个数据处理流程。
(3)ReduceTask:负责 Reduce 阶段的整个数据处理流程。
采用反编译工具反编译源码,发现 WordCount 案例有 Map 类、Reduce 类和驱动类。且
数据的类型是 Hadoop 自身封装的序列化类型。
用户编写的程序分成三个部分:Mapper、Reducer 和 Driver。
1.Mapper阶段
(1)用户自定义的Mapper要继承自己的父类
(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)
(3)Mapper中的业务逻辑写在map()方法中
(4)Mapper的输出数据是KV对的形式(KV的类型可自定义)
(5)map()方法(MapTask进程)对每一个
2.Reducer阶段
(1)用户自定义的Reducer要继承自己的父类
(2)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV
(3)Reducer的业务逻辑写在reduce()方法中
(4)ReduceTask进程对每一组相同k的
3.Driver阶段
相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是封装了MapReduce程序相关运行参数的job对象
1)什么是序列化
序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。
反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象
(1)紧凑 :高效使用存储空间。
(2)快速:读写数据的额外开销小。
(3)互操作:支持多语言的交互
数据块:Block 是 HDFS 物理上把数据分成一块一块。数据块是 HDFS 存储数据单位。
数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行
存储。数据切片是 MapReduce 程序计算输入数据的单位,一个切片会对应启动一个 MapTask。
(1)简单地按照文件的内容长度进行切片
(2)切片大小,默认等于Block大小
(3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
框架默认的 TextInputFormat 切片机制是对任务按文件规划切片,不管文件多小,都会
是一个单独的切片,都会交给一个 MapTask,这样如果有大量小文件,就会产生大量的
MapTask,处理效率极其低下。
1)应用场景:
CombineTextInputFormat 用于小文件过多的场景,它可以将多个小文件从逻辑上规划到
一个切片中,这样,多个小文件就可以交给一个 MapTask 处理。 2)虚拟存储切片最大值设置
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m
注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。
3)切片机制
生成切片过程包括:虚拟存储过程和切片过程二部分。
上面的流程是整个 MapReduce 最全工作流程,但是 Shuffle 过程只是从第 7 步开始到第
16 步结束,具体 Shuffle 过程详解,如下:
(1)MapTask 收集我们的 map()方法输出的 kv 对,放到内存缓冲区中
(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
(3)多个溢出文件会被合并成大的溢出文件
(4)在溢出过程及合并的过程中,都要调用 Partitioner 进行分区和针对 key 进行排序
(5)ReduceTask 根据自己的分区号,去各个 MapTask 机器上取相应的结果分区数据
(6)ReduceTask 会抓取到同一个分区的来自不同 MapTask 的结果文件,ReduceTask 会
将这些文件再进行合并(归并排序)
(7)合并成大文件后,Shuffle 的过程也就结束了,后面进入 ReduceTask 的逻辑运算过
程(从文件中取出一个一个的键值对 Group,调用用户自定义的 reduce()方法)
注意:
(1)Shuffle 中的缓冲区大小会影响到 MapReduce 程序的执行效率,原则上说,缓冲区越大,磁盘 io 的次数越少,执行速度就越快。
(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb 默认 100M。
Map 方法之后,Reduce 方法之前的数据处理过程称之为 Shuffle。
(1)如果ReduceTask的数量> getPartition的结果数,则会多产生几个空的输出文件part-r-000xx;
(2)如果1
例如:假设自定义分区数为5,则
(1)job.setNumReduceTasks(1); 会正常运行,只不过会产生一个输出文件
(2)job.setNumReduceTasks(2); 会报错
(3)job.setNumReduceTasks(6); 大于5,程序会正常运行,会产生空文件
(4)分区号必须从零开始,逐一累加。
排序是MapReduce框架中最重要的操作之一。
MapTask和ReduceTask均会对数据按 照key进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。
默认排序是按照字典顺序排序,且实现该排序的方法是快速排序。
对于MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次快速排序,并将这些有序数 据溢写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行归并排序。
对于ReduceTask,它从每个MapTask上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写磁盘上,否则存储在内存中。如果磁盘上文件数目达到一定阈值,则进行一次归并排序以生成一个更大文件;如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据溢写到磁盘上。当所有数据拷贝完毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序。
(1)部分排序
MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部有序。
(2)全排序
最终输出结果只有一个文件,且文件内部有序。实现方式是只设置一个ReduceTask。但该方法在处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce所提供的并行架构。
(3)辅助排序:(GroupingComparator分组)
在Reduce端对key进行分组。应用于:在接收的key为bean对象时,想让一个或几个字段相同(全部字段比较不相同)的key进入到同一个reduce方法时,可以采用分组排序。
(4)二次排序
在自定义排序过程中,如果compareTo中的判断条件为两个即为二次排序。
(1)Combiner是MR程序中Mapper和Reducer之外的一种组件。
(2)Combiner组件的父类就是Reducer。
(3)Combiner和Reducer的区别在于运行的位置
Combiner是在每一个MapTask所在的节点运行;
Reducer是接收全局所有Mapper的输出结果;
(4)Combiner的意义就是对每一个MapTask的输出进行局部汇总,以减小网络传输量。 (5)Combiner能够应用的前提是不能影响最终的业务逻辑,而且,Combiner的输出kv
应该跟Reducer的输入kv类型要对应起来
Mapper Reducer
3 5 7 -> (3+5+7)/3=5 (3+5+7+2+6)/5=23/5 不等于 (5+4)/2=9/2
2 6 ->(2+6)/2=4
(1)Read 阶段:MapTask 通过 InputFormat 获得的 RecordReader,从输入 InputSplit 中
解析出一个个 key/value。
(2)Map 阶段:该节点主要是将解析出的 key/value 交给用户编写 map()函数处理,并产生一系列新的 key/value。
(3)Collect 收集阶段:在用户编写 map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的 key/value 分区(调用
Partitioner),并写入一个环形内存缓冲区中。
(4)Spill 阶段:即“溢写”,当环形缓冲区满后,MapReduce 会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排
序,并在必要时对数据进行合并、压缩等操作。
溢写阶段详情:
步骤 1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号
Partition 进行排序,然后按照 key 进行排序。这样,经过排序后,数据以分区为单位聚集在
一起,且同一分区内所有数据按照 key 有序。
步骤 2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文
件 output/spillN.out(N 表示当前溢写次数)中。如果用户设置了 Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。
步骤 3:将分区数据的元信息写到内存索引数据结构 SpillRecord 中,其中每个分区的元
信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大
小超过 1MB,则将内存索引写到文件 output/spillN.out.index 中。 (5)Merge 阶段:当所有数据处理完成后,MapTask 对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。当所有数据处理完后,MapTask 会将所有临时文件合并成一个大文件,并保存到文件output/file.out 中,同时生成相应的索引文件 output/file.out.index。 在进行文件合并过程中,MapTask 以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并 mapreduce.task.io.sort.factor(默认 10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。让每个 MapTask 最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销
(1)Copy 阶段:ReduceTask 从各个 MapTask 上远程拷贝一片数据,并针对某一片数
据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
(2)Sort 阶段:在远程拷贝数据的同时,ReduceTask 启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。按照 MapReduce 语义,用
户编写 reduce()函数输入数据是按 key 进行聚集的一组数据。为了将 key 相同的数据聚在一起,Hadoop 采用了基于排序的策略。由于各个 MapTask 已经实现对自己的处理结果进行了局部排序,因此,ReduceTask 只需对所有数据进行一次归并排序即可。
(3)Reduce 阶段:reduce()函数将计算结果写到 HDFS 上。
回顾:MapTask 并行度由切片个数决定,切片个数由输入文件和切片规则决定。
思考:ReduceTask 并行度由谁决定?
设置 ReduceTask 并行度(个数)
ReduceTask 的并行度同样影响整个 Job 的执行并发度和执行效率,但与 MapTask 的并
发数由切片数决定不同,ReduceTask 数量的决定是可以直接手动设置:
// 默认值是 1,手动设置为 4
job.setNumReduceTasks(4);
注意事项
(1)ReduceTask=0,表示没有Reduce阶段,输出文件个数和Map个数一致。
(2)ReduceTask默认值就是1,所以输出文件个数为一个。
(3)如果数据分布不均匀,就有可能在Reduce阶段产生数据倾斜
(4)ReduceTask数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1个ReduceTask。
(5)具体多少个ReduceTask,需要根据集群性能而定。
(6)如果分区数不是1,但是ReduceTask为1,是否执行分区过程。答案是:不执行分区过程。因为在MapTask的源码中,执行分区的前提是先判断ReduceNum个数是否大于1。不大于1肯定不执行。
Map 端的主要工作:为来自不同表或文件的 key/value 对,打标签以区别不同来源的记
录。然后用连接字段作为 key,其余部分和新加的标志作为 value,最后进行输出。
Reduce 端的主要工作:在 Reduce 端以连接字段作为 key 的分组已经完成,我们只需要
在每一个分组当中将那些来源于不同文件的记录(在 Map 阶段已经打标志)分开,最后进
行合并就 ok 了。
1)使用场景
Map Join 适用于一张表十分小、一张表很大的场景。
2)优点
思考:在 Reduce 端处理过多的表,非常容易产生数据倾斜。怎么办?
在 Map 端缓存多张表,提前处理业务逻辑,这样增加 Map 端业务,减少 Reduce 端数
据的压力,尽可能的减少数据倾斜。
3)具体办法:采用 DistributedCache
(1)在 Mapper 的 setup 阶段,将文件读取到缓存集合中。 (2)在 Driver 驱动类中加载缓存。
//缓存普通文件到 Task 运行节点。
job.addCacheFile(new URI(“file:///e:/cache/pd.txt”));
//如果是集群运行,需要设置 HDFS 路径
job.addCacheFile(new URI(“hdfs://hadoop102:8020/cache/pd.txt”));
“ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取
(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL 一词较常用在数据仓库,但其对象并不限于数据仓库
在运行核心业务 MapReduce 程序之前,往往要先对数据进行清洗,清理掉不符合用户
要求的数据。清理的过程往往只需要运行 Mapper 程序,不需要运行 Reduce 程序。
1)输入数据接口:InputFormat
(1)默认使用的实现类是:TextInputFormat
(2)TextInputFormat 的功能逻辑是:一次读一行文本,然后将该行的起始偏移量作为
key,行内容作为 value 返回。
(3)CombineTextInputFormat 可以把多个小文件合并成一个切片处理,提高处理效率。
2)逻辑处理接口:Mapper
用户根据业务需求实现其中三个方法:map() setup() cleanup ()
3)Partitioner 分区
(1)有默认实现 HashPartitioner,逻辑是根据 key 的哈希值和 numReduces 来返回一个
分区号;key.hashCode()&Integer.MAXVALUE % numReduces
(2)如果业务上有特别的需求,可以自定义分区。
4)Comparable 排序
(1)当我们用自定义的对象作为 key 来输出时,就必须要实现 WritableComparable 接
口,重写其中的 compareTo()方法。
(2)部分排序:对最终输出的每一个文件进行内部排序。
(3)全排序:对所有数据进行排序,通常只有一个 Reduce。 (4)二次排序:排序的条件有两个。
5)Combiner 合并
Combiner 合并可以提高程序执行效率,减少 IO 传输。但是使用时必须不能影响原有的
业务处理结果。
6)逻辑处理接口:Reducer
用户根据业务需求实现其中三个方法:reduce() setup() cleanup ()
7)输出数据接口:OutputFormat
(1)默认实现类是 TextOutputFormat,功能逻辑是:将每一个 KV 对,向目标文本文件
输出一行。
(2)用户还可以自定义 OutputFormat。
1)压缩的好处和坏处
压缩的优点:以减少磁盘 IO、减少磁盘存储空间。
压缩的缺点:增加 CPU 开销。
2)压缩原则
(1)运算密集型的 Job,少用压缩
(2)IO 密集型的 Job,多用压缩
压缩方式选择时重点考虑:压缩/解压缩速度、压缩率(压缩后存储大小)、压缩后是否可以支持切片。
优点:压缩率比较高;
缺点:不支持 Split;压缩/解压速度一般;
优点:压缩率高;支持 Split;
缺点:压缩/解压速度慢。
优点:压缩/解压速度比较快;支持 Split;
缺点:压缩率一般;想支持切片需要额外创建索引。
优点:压缩和解压缩速度快;
缺点:不支持 Split;压缩率一般
压缩可以在 MapReduce 作用的任意阶段启用。
1)导包容易出错。尤其 Text 和 CombineTextInputFormat。
2)Mapper 中第一个输入的参数必须是 LongWritable 或者 NullWritable,不可以是 IntWritable. 报的错误是类型转换异常。
3)java.lang.Exception: java.io.IOException: Illegal partition for 13926435656 (4),说明 Partition和 ReduceTask 个数没对上,调整 ReduceTask 个数。
4)如果分区数不是 1,但是 reducetask 为 1,是否执行分区过程。答案是:不执行分区过程。因为在 MapTask 的源码中,执行分区的前提是先判断 ReduceNum 个数是否大于 1。不大于1 肯定不执行。
5)在 Windows 环境编译的 jar 包导入到 Linux 环境中运行,
hadoop jar wc.jar com.li.mapreduce.wordcount.WordCountDriver /user/li/
/user/li/output
报如下错误:
Exception in thread “main” java.lang.UnsupportedClassVersionError:
com/li/mapreduce/wordcount/WordCountDriver : Unsupported major.minor version 52.0
原因是 Windows 环境用的 jdk1.7,Linux 环境用的 jdk1.8。
解决方案:统一 jdk 版本。
6)缓存 pd.txt 小文件案例中,报找不到 pd.txt 文件
原因:大部分为路径书写错误。还有就是要检查 pd.txt.txt 的问题。还有个别电脑写相对路径找不到 pd.txt,可以修改为绝对路径。
7)报类型转换异常。通常都是在驱动函数中设置 Map 输出和最终输出时编写错误。Map 输出的 key 如果没有排序,也会报类型转换异常。
8)集群中运行 wc.jar 时出现了无法获得输入文件。
原因:WordCount 案例的输入文件不能放用 HDFS 集群的根目录。
9)出现了如下相关异常
Exception in thread “main” java.lang.UnsatisfiedLinkError:
org.apache.hadoop.io.nativeio.NativeIO W i n d o w s . a c c e s s 0 ( L j a v a / l a n g / S t r i n g ; I ) Z a t o r g . a p a c h e . h a d o o p . i o . n a t i v e i o . N a t i v e I O Windows.access0(Ljava/lang/String;I)Z at org.apache.hadoop.io.nativeio.NativeIO Windows.access0(Ljava/lang/String;I)Zatorg.apache.hadoop.io.nativeio.NativeIOWindows.access0(Native Method)
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:609)
at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:977)
java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
at org.apache.hadoop.util.Shell.getQualifiedBinPath(Shell.java:356)
at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:371)
at org.apache.hadoop.util.Shell.(Shell.java:364)
解决方案:拷贝 hadoop.dll 文件到 Windows 目录 C:\Windows\System32。个别同学电脑
还需要修改 Hadoop 源码。
方案二:创建如下包名,并将 NativeIO.java 拷贝到该包名下
10)自定义 Outputformat 时,注意在 RecordWirter 中的 close 方法必须关闭流资源。否则输出的文件内容中数据为空。