- 关于前端的性能优化
性能优化主要涵盖了以下四个方面:(tip:仅代表个人总结,如有不当,还希望看到的大佬多多指示)减少网络请求:合并文件、使用CDN、启用缓存。优化资源加载:代码分割、懒加载、图片压缩。提升渲染性能:减少重绘回流、防抖节流、使用WebWorker。监控和迭代:定期使用工具检测性能,持续优化。一、网络层面优化减少HTTP请求合并文件:将多个CSS或JavaScript文件合并成一个,减少请求次数。使用C
- AI Agent开发第60课-巧用QWEN3.0 0.6B:小身板扛大旗,AI界的轻骑兵
TGITCIC
AIAgent开发大全qwen3qwenaliqwen国产大模型小模型开源小模型aiagent
第一章:小模型的生存法则——为什么0.6B参数就够了?1.1参数量的"黄金分割点"模型类型参数量推理延迟(ms)并发量(QPS)Qwen-0.6B6亿15-3010万+Qwen-1.5B15亿50-805万Qwen-7B70亿200+1万数据对比显示,当参数量超过6亿后,性能提升与成本增长呈现"抛物线"关系。就像智能手机从4G到5G的迭代,用户感知不到的速度提升,却要为硬件升级买单。Qwen-0.
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- 《谷子书店》第六节 这是一个最好的时代,也是一个最坏的时代。
幸福de飞鱼
今天,阅读的是《谷子书店》第十一章《查泰莱夫人的情人》和第十二章《悲惨世界》。《查泰莱夫人的情人》主要讲的是年轻时的阿婆对爱的的期待和向往。正如“查泰莱夫人的雨”也落在了阿婆的世界里悸动。“你所经历的现在正是未来的一部分,正如过去也是现在的一部分。它们不能分割,彼此吞噬。我们这些时间的奴仆,终将要带着现在犯下的罪孽走向未来。”——摘自司徒老师未出版的书稿。《悲惨世界》这一章引用了冉阿让历经苦难的故
- 华为OD机考2025B卷 - 仿LISP运算 (Java & Python& JS & C++ & C )
算法大师
最新华为OD机试真题华为OD机试真题(Java/JS/Py/C)华为odjavalispjavascriptc++python
最新华为OD机试真题目录:点击查看目录华为OD面试真题精选:点击立即查看2025华为od机试2025B卷-华为机考OD2025年B卷题目描述LISP语言唯一的语法就是括号要配对。形如(OPP1P2…),括号内元素由单个空格分割。其中第一个元素OP为操作符,后续元素均为其参数,参数个数取决于操作符类型。注意:参数P1,P2也有可能是另外一个嵌套的(OPP1P2…),当前OP类型为add/sub/mu
- 【Python】pandas.cut()函数的用法
pandas.cut()函数是一个非常有用的工具,用于将数值型数据按照指定的分箱或区间进行分割,从而将连续的数值变量转换为离散的类别变量。这在数据分析和机器学习的特征工程中尤其有用,因为它可以帮助揭示不同区间内的数据分布特征,或者简化模型的输入。基本用法pandas.cut()的基本语法如下:pandas.cut(x,bins,right=True,labels=None,retbins=Fals
- Python Pandas.cut函数解析与实战教程
皓月照山川
pandaspythonpandas开发语言
PythonPandas.cut函数解析与实战教程摘要pandas.cut是数据分析工具库Pandas中一个极其强大且常用的函数。它的核心功能是将连续的数值型数据根据指定的间断点(bins)进行分割,转换成离散化的区间类别(categoricaldata)。这种操作在数据预处理、特征工程和数据可视化中至关重要,例如,将用户的年龄分段、将考试分数评级、或将销售额划分为不同的等级。本文章将从基础用法到
- 云服务器与 VPS 的区别
老邵
云服务器又称为云主机,是通过大规模统一调度,将一些硬件设备虚拟为现实中的主机的技术。VPS是将一台真实的主机通过软件虚拟成多个小主机的技术。二者区别:云服务器就是一台主机,和真实的主机没有区别,还可以弹性调整配置。VPS是由一个主机分割的,独立性更差,多个VPS有可能共享一个CPU内存。用租房子来比喻的话,云服务器是租一个房子,VPS是租一个房子分出来的一个单元。AlexeyRuban2016-0
- 深入详解:决策树在医学影像分割特征选择中的应用与实现
猿享天开
决策树算法机器学习人工智能
深入详解:决策树在医学影像分割特征选择中的应用与实现决策树(DecisionTree)作为一种经典的机器学习算法,以其简单、直观和可解释性强的特点,在医学影像分割的特征选择中扮演了重要角色。医学影像分割(如分割脑肿瘤、肝脏、肺结节等)需要从高维影像数据中提取关键特征,以提升分割模型的精度和效率。决策树通过构建树形结构,筛选对分割任务最重要的特征,降低数据维度,同时提供可解释的规则。本文将从原理、实
- 组合问题(分割字符串)
limitless_peter
算法
131.分割回文串-力扣(LeetCode)classSolution{private:vector>result;vectorpath;voidbacktracking(string&s,intstartIndex){if(startIndex>=s.size()){result.push_back(path);return;}for(inti=startIndex;i>partition(st
- 代码随想录训练因第三十天| 39.组合总和 40.组合总和ll 131.分割回文串
焜昱错眩..
算法
39.组合总和:文档讲解:代码随想录|39.组合总和视频讲解:带你学透回溯算法-组合总和(对应「leetcode」力扣题目:39.组合总和)|回溯法精讲!_哔哩哔哩_bilibili状态:已做出思路:这道题目的关键点是给出的数组是无重复的元素,并且同一个数字能无限重复使用,那么使用回溯的话递归条件就按照题目要求,就是组合数的和等于目标值。题目并没有限制组合数个数,所以不用记录每次组合个数。设置三个
- SpringBoot—整合log4j2入门和log4j2.xml配置详解
LuckyTHP
springbootlog4jxml
引言对于一个线上程序或者服务而言,重要的是要有日志输出,这样才能方便运维。而日志的输出需要有一定的规划,如日志命名、日志大小,日志分割的文件个数等。在Spring的框架下,我们可以使用log4j来进行日志的设置,高版本的SpringBoot会使用log4j2。介绍log4j2概述截取官网的原话:ApacheLog4j2isanupgradetoLog4jthatprovidessignifican
- 秋招Day20 - 微服务 - 概念
Java初学者小白
#分布式八股微服务架构云原生java
什么是微服务?将一个大型的单体项目分割成一个个可以独立开发和部署的小服务,服务之间松耦合,可以通过轻量级通信机制(比如HTTP)相互协作微服务带来了哪些挑战?介绍一下一下Dubbo?Dubbo是一个高性能、轻量级的Java微服务框架,它提供了服务的注册与发现(配合注册中心)、服务间调用(RPC)、负载均衡(权重)、容错(重试、快速失败)等功能Dubbo使用是基于RPC的通信模型,支持多种传输协议,
- TypeScript的export用法
无风听海
HarmonyOStypescriptimport
在TypeScript中,export用于将模块中的变量、函数、类、类型等暴露给外部使用。export语法允许将模块化的代码分割并在其他文件中导入。1.命名导出(NamedExport)命名导出是TypeScript中最常见的一种导出方式,它允许你导出多个实体,导入时需要使用相同的名字。语法export{,,...};或者直接在声明时进行导出:export;示例//math.tsexportcon
- 图像处理全栈指南:从传统算法到深度学习,再到FPGA移植
阿牛的药铺
图像算法区图像处理算法深度学习
图像处理全栈指南:从传统算法到深度学习,再到FPGA移植一、引言:图像处理是光学类产品的“大脑”光学类产品(可见光摄像头、红外热成像、光谱仪)的核心价值,在于将光信号转化为可理解的图像信息。而图像处理算法,就是解读这些信息的“大脑”——从传统的边缘检测到深度学习的目标识别,从实时降噪到高维光谱分割,每一步都决定了产品的性能(如分辨率、帧率、功耗)。对于算法移植工程师(科研助理1)岗位而言,需要掌握
- gis怎么提取水系_深度学习在GIS中的应用
weixin_36214932
gis怎么提取水系
近年来,人工智能(AI)飞速发展,在诸如图像识别,图像分割和目标智能提取等任务上,达到甚至在某些方面超过了人工的准确度。人工智能在图像识别方面的优势,为AI和GIS的结合提供了前所未有的契机。人工智能,机器学习和深度学习正在帮助我们认识世界、改善世界。AI是计算机科学的一个重要分支,在某种程度上具有类似人类工作的执行能力,能以一种新的与人类相似的方式做出智能的反应,机器学习利用数据驱动算法从数据中
- 14、基于无人机与CNN技术的森林研究:原木识别与冠层空隙分析
Sunny
计算科学前沿:ICCSA2021精选无人机CNN原木识别
基于无人机与CNN技术的森林研究:原木识别与冠层空隙分析基于CNN的原木识别研究近年来,基于单根原木追踪圆木的方法备受关注。此前的研究提出了一种基于原木端面图像的物理自由方法,借鉴了指纹和虹膜识别的技术,在使用真实分割数据时取得了不错的效果。但在实际应用中,需要一个完全自动化的系统。为了填补这一空白,研究采用了基于卷积神经网络(CNN)的分割方法与原木识别方法相结合的方式,并与传统原木识别方法在自
- yolov8seg如何获取每个结果的mask,不是一整个的mask
boss-dog
视觉算法开发yolov8rk3588
使用rk3588开发板对yolov8-seg进行推理时,瑞芯微官方代码中对推理的结果进行了封装,返回的分割结果是所有目标的mask,而不是单个目标的mask。yolov8seg怎么获得每个结果的mask,不是一整个的mask:https://github.com/airockchip/rknn_model_zoo/issues/175解决postprocess.h中关于检测结果的结构体解析type
- 【语义分割专栏】4:deeplab系列实战篇(附上完整可运行的代码pytorch)
fouen
语义分割pytorch人工智能python计算机视觉深度学习
文章目录前言Deeplab系列全流程代码模型搭建(model)backbone的搭建Deeplabv1Deeplabv2Deeplabv3Deeplabv3+数据处理(dataloader)评价指标(metric)训练流程(train)模型测试(test)效果图结语前言Deeplab系列原理篇讲解:【语义分割专栏】4:deeplab系列原理篇_deeplab系列详解-CSDN博客代码地址,下载可复
- 华为OD机试_2025 B卷_人气最高的店铺(Python,200分)(附详细解题思路)
蜗牛的旷野
华为OD机试Python版华为odpython算法
题目描述某购物城有m个商铺,现决定举办一场活动选出人气最高店铺。活动共有n位市民参与,每位市民只能投一票,但1号店铺如果给该市民发放q元的购物补贴,该市民会改为投1号店铺。请计算1号店铺需要最少发放多少元购物补贴才能成为人气最高店铺(即获得的票数要大于其他店铺),如果1号店铺本身就是票数最高店铺,返回0。输入描述第一行为小写逗号分割的两个整数n,m,其中:第一个整数n表示参与的市民总数第二个整数m
- logrotate&timer使用与介绍
qsjming
linux运维服务器
logrotatelogrotate程序是一个日志文件管理工具。用于分割日志文件,删除旧的日志文件,并创建新的日志文件,起到“转储”作用。可以节省磁盘空间。1、配置文件介绍Linux系统默认安装logrotate工具,它默认的配置文件在/etc/logrotate.conf/etc/logrotate.d/logrotate.conf是主要的配置文件,logrotate.d是一个目录,该目录里的所
- 超超详细的指针讲解
NorthTruths
C语言jvm数据结构c语言
本篇将先初步介绍指针的各种有关知识,然后再讲解指针与数组、指针与函数等目录内存指针基本有关知识指针有关操作符:指针变量的定义:指针变量的大小:指针变量类型的意义:指针运算:野指针:二级指针:特殊点的指针类型数组指针:函数指针空指针首先要清楚一点,指针和内存是不可分割的,所以我们要先对内存有一定了解才能学懂指针。内存内存被划分为一个个内存单元,大小取一个字节,我们可以这样理解:把内存看作一个个房间,
- [2025CVPR-图象合成、生成方向]ODA-GAN:由弱监督学习辅助的正交解耦比对GAN 虚拟免疫组织化学染色
清风AI
计算机视觉算法深度学习算法详解及代码复现生成对抗网络机器学习目标检测目标跟踪人工智能傅立叶分析深度学习
目录1.背景和动机2.方法概述:ODA-GAN框架2.1弱监督分割管道2.2样本重新划分策略2.3ODA-GAN核心模块3.实验设置与结果3.1数据集和评估指标3.2性能比较3.3消融研究4.结论与贡献1.背景和动机虚拟免疫组化(IHC)染色技术旨在通过生成模型将H&E染色图像转换为IHC染色图像,从而避免繁琐的物理染色过程(如重复切片和抗体处理)。然而,现有方法面临关键挑战:染色不真实与不可靠性
- 工业缺陷检测的计算机视觉方法总结
思绪漂移
计算机视觉人工智能缺陷检测
工业缺陷检测的计算机视觉方法总结传统方法特征提取方式:颜色:基于HSV/RGB空间分析,如颜色直方图、颜色矩等纹理:采用LBP、Haar、Gabor滤波器等算子提取纹理模式形状:基于Hu矩、Zernike矩等数学描述符刻画几何特性尺寸:通过连通域分析计算物体像素面积、周长等参数典型处理流程:手动设计特征提取算法建立规则分类器(如SVM、决策树)基于阈值分割目标区域深度学习方法核心特点:端到端学习:
- 将Detection 2模型实例分割功能集成到大模型后门攻击实验中的完整指南
神经网络15044
算法python深度学习人工智能神经网络算法图像处理
将Detection2模型实例分割功能集成到大模型后门攻击实验中的完整指南前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言1.1研究背景与意义在计算机视觉领域,实例分割是一项关键任务,它不仅能识别图像中的物体类别,还能精确地分割出每个实例的像素区域。FacebookAIResearch开发的Detectron2框架提供了高效的
- MySQL中的事务支持详解
事务支持是数据库管理系统(如MySQL)中确保数据完整性和一致性的核心功能。在MySQL中,只有部分存储引擎(如InnoDB)支持完整的事务功能。事务的基本概念事务(Transaction)是指作为单个逻辑工作单元执行的一系列操作,这些操作要么全部成功执行,要么全部不执行,保持数据库从一个一致状态转变为另一个一致状态。事务的四个关键特性(ACID)原子性(Atomicity):事务是不可分割的工作
- PM2使用
使用进程管理器PM2PM2是一个为Node.js应用设计的、带有负载均衡功能的生产环境进程管理器。用它来管理npx执行的命令是最佳实践。优点:✅进程守护:程序崩溃后会自动重启。✅开机自启:可以配置,让服务器重启后自动运行你的服务。✅日志管理:自动分割和管理日志,方便查看。✅性能监控:可以监控CPU和内存占用。✅跨平台:在Linux,macOS和Windows上都能用。操作步骤:1.全局安装PM2如
- AAAI 2024 | TMFormer:用于缺失模态脑肿瘤分割的令牌合并Transformer
小白学视觉
医学图像处理论文解读transformer深度学习人工智能AAAI论文解读计算机顶会
论文信息题目:TMFormer:TokenMergingTransformerforBrainTumorSegmentationwithMissingModalitiesTMFormer:用于缺失模态脑肿瘤分割的令牌合并Transformer作者:ZheyuZhang,GangYang,YueyiZhang,HuanjingYue,AipingLiu,YunweiOu,JianGong,Xiaoy
- 力扣-416.分割等和子集
题目链接416.分割等和子集classSolution{publicbooleancanPartition(int[]nums){intsum=0;for(inti=0;i=0;j--){if(j-nums[i]>=0){//更新dp[j]:比较不放入当前数字和放入当前数字两种情况dp[j]=Math.max(dp[j],dp[j-nums[i]]+nums[i]);}}}returndp[tar
- 计算机视觉:少样本学习(Few-Shot Learning)在视觉中的应用
xcLeigh
计算机视觉CV计算机视觉学习人工智能FSLAI
计算机视觉:少样本学习(Few-ShotLearning)在视觉中的应用一、前言二、少样本学习基础概念2.1定义与范畴2.2与传统机器学习对比2.3核心挑战三、少样本学习在计算机视觉中的典型应用3.1图像分类3.1.1新类别识别3.1.2医学图像分类3.2目标检测3.2.1新目标检测3.2.2小目标检测3.3图像分割3.3.1医学图像分割3.3.2工业缺陷检测四、少样本学习在计算机视觉中的技术方法
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement