python神经网络模型_python – 神经网络的Keras模型load_weights

你需要先创建一个名为model的网络对象,然后在调用model.load_weights(fname)之后编译它

工作实例:

from keras.models import Sequential

from keras.layers import Dense, Activation

def build_model():

model = Sequential()

model.add(Dense(output_dim=64, input_dim=100))

model.add(Activation("relu"))

model.add(Dense(output_dim=10))

model.add(Activation("softmax"))

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

return model

model1 = build_model()

model1.save_weights('my_weights.model')

model2 = build_model()

model2.load_weights('my_weights.model')

# do stuff with model2 (e.g. predict())

你可能感兴趣的:(python神经网络模型)