- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- 【WRF-Chem教程第六期】WRF-Chem KPP Coupler 简介
WW、forever
WRFWRF-Chem
WRF-ChemKPPCoupler简介6.1介绍(Introduction)6.2KPP编译所需的系统环境(KPPRequirements)6.3编译WKC(CompilingtheWKC)6.4使用WKC实现化学机制(ImplementingchemicalmechanismswithWKC)当前可用机制(基于WKC的KPP实现)6.5WKC的目录组织结构(LayoutofWKC)WKC所在目
- [分享]钛极OS(TiJOS)物联网操作系统介绍
钛极OS(TiJOS)物联网操作系统介绍官方链接:http://dev.tijos.net/overview/TiJOS_overview/1.tijos_introduction/钛极OS(TiJOS)是一个支持使用Java开发嵌入式智能硬件应用的物联网操作系统,支持多种MCU芯片,为开发者提供高效、成熟的物联网应用开发平台,让智能硬件及IoT应用开发更快捷简单。钛极OS(TiJOS)可运行于低
- R for data science翻译笔记1.1 introduction
七月0317
MNE-Python翻译版-中文官方文档笔记信息可视化
本书第一章节(1.1-1.8)的目标是让读者尽快掌握数据探索的基本工具。数据探索是查看数据、快速生成假设、快速测试,然后不断重复的艺术。数据探索的目标是生成许多有希望的线索,我们可以稍后进行更深入的探索。在本书的这一部分中,你将学习一些有用的工具,它们可以立即带来回报:可视化是R编程的绝佳起点,因为反馈非常明显:你可以绘制优雅且信息量大的图形来帮助你理解数据。在数据可视化中,您将深入可视化,学习g
- 多维时序 | Matlab实现GA-LSTM-Attention遗传算法优化长短期记忆神经网络融合注意力机制多变量时间序列预测
天天Matlab代码科研顾问
预测模型神经网络matlablstm
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍风力发电是一种清洁能源,越来越受到人们的关注和重视。然而,由于风力发电的不稳定性和不可控性,风电预测成为了一个至关重要的问题。为了更精准地预测风电发电量,许多研究者开始尝试利
- GWO-CNN-BiLSTM-Attention多变量多步时间序列预测 | Matlab实现灰狼算法优化卷积双向长短期记忆融合注意力机制
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:时间序列预测在各个领域具有广泛的应用,而多变量多步时间序列预测由于其复杂性和挑战性,一直是研究热点。本文提出了一种基于灰狼算法(GreyWolfOptimizer,GWO)优化的卷积神经网络(Conv
- 使用 Dart 库轻松进行时间序列预测 - 立即执行多元预测
krishnaik06
深度学习AI写作pythonAI作画神经网络
这个视频介绍了名为Darts的Python库,它可以简化时间序列数据处理和预测。主要内容:解决时间序列预测难题:Darts库提供了多种模型,包括经典的ARIMA、SARIMAX,以及深度学习模型,可以轻松处理单变量和多变量时间序列预测。简化操作:Darts库使用统一的fit和predict函数,类似于scikit-learn,让用户可以轻松地使用各种模型。支持多种模型:Darts库包含ARIMA、
- 深入浅出SOME/IP协议:基本概念和原理
泡沫o0
智能驾驶·C++中间件与平台开发实践tcp/ip网络linux数据结构c语言c++开发语言
目录标题1.引言(Introduction)1.1背景介绍:车载网络的演进与挑战1.2SOME/IP协议的兴起背景2.SOME/IP协议概述2.1定义与特点2.2SOME/IP与传统车载网络协议的比较3.基本工作原理(BasicWorkingPrinciple)3.1消息结构与传输方式(MessageStructureandTransmissionMode)3.2远程过程调用支持(Supportf
- Grafana 可视化配置
7 号
grafana
Grafana是什么Grafana是一个开源的可视化和监控工具,广泛用于查看和分析来自各种数据源的时间序列数据。它提供了一个灵活的仪表盘(dashboard)界面,用户可以通过它将数据源中的指标进行图表化展示和监控,帮助分析趋势、监控系统健康状态以及进行告警管理。Grafana常用于DevOps、IT基础设施监控和性能优化领域,与Prometheus等监控工具搭配使用非常流行。Grafana的特点
- 用Python构建机器学习模型预测股票趋势:从数据到部署的实战指南
SaleCoder
python机器学习开发语言Python股票预测LSTM股票模型机器学习股票趋势
引言在AI驱动的金融时代,机器学习股票趋势预测已成为投资者和开发者关注的热点。通过Python,我们可以构建智能模型,分析历史数据并预测未来股价走势。这不仅结合了时间序列分析和深度学习技术,还能帮助用户做出更明智的投资决策。本文将详细指导你用Python从零构建一个LSTM股票模型,结合线性回归作为基准,融入常用股票预测方法如移动平均和特征工程。我们会使用真实数据(如苹果股票),强调模型的难度与高
- 【性能测试】Jmeter+Grafana+InfluxDB+Prometheus Windows安装部署教程
软件测试-阿涛
性能测试jmetergrafanaprometheus压力测试性能优化测试工具
一、工具作用与整体架构1.1各工具核心作用工具作用描述关键特性Jmeter性能测试工具,模拟多用户并发请求,生成测试数据支持HTTP/HTTPS、数据库等多种协议,可自定义测试场景InfluxDB时序数据库,专门存储时间序列数据(如Jmeter测试结果)高写入性能,支持Flux查询语言,适合存储海量测试指标Prometheus时序数据库,专注于系统监控指标收集(如CPU、内存、网络)支持数据拉取(
- 零基础完整版入门经典深度学习时间序列预测项目实战+最新前沿时间序列预测模型代码讲解学习整理(附完整可运行代码)
OverOnEarth
时间序列预测项目实战深度学习学习人工智能
专栏内容本专栏主要整理了作者在时间序列预测领域内的一些学习思路与代码整理,帮助大家在初进入此领域时,可以快速掌握代码进行实战操作,对代码的操作再结合论文阅读肯定是上升更快嘛,作者也愿意和大家一起讨论进步,下面的内容会逐步更新,作者主页的资源列也会放出一些可下载的资源供大家参考学习噢。一、LSTM时间序列预测完整代码示例学习分析(pytorch框架)精选试读文章二、LSTM多变量输入实现多步预测完整
- 时间序列预测法的分类
cd4254818c94
时间序列预测法可用于短期预测、中期预测和长期预测。根据对资料分析方法的不同,又可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。1.简单序时平均数法也称算术平均法。即把若干历史时期的统计数值作为观察值,求出算术平均数作为下期预测值。这种方法基于下列假设:“过去这样,今后也将这样”,把近期和远期数据等同化和平均化,
- Java 实现grpc
TanYYF
javajavarpc
1.grpc简介官方地址:https://grpc.io/docs/what-is-grpc/introduction/在gRPC中,客户机应用程序可以直接调用不同机器上的服务器应用程序上的方法,就像它是本地对象一样,使您更容易创建分布式应用程序和服务。与许多RPC系统一样,gRPC基于定义服务的思想,指定可以远程调用的方法及其参数和返回类型。在服务器端,服务器实现这个接口,并运行gRPC服务器来
- InfluxDB保姆级教程!部署+Python操作时序数据,监控场景必备
总有刁民想爱朕ha
python开发语言Influxdb
InfluxDB保姆级教程!部署+Python操作时序数据,监控场景必备!"为什么运维半夜总被报警吵醒?""为什么老板要的实时报表总是延迟?"答案很可能是:你的时序数据库没选对!当每秒处理数万条监控数据、百万级IoT设备实时上报时,传统数据库直接崩盘!InfluxDB就是为此而生的高性能时序数据库,今天带你从部署到Python操作一站式通关!一、InfluxDB:时间序列数据的"闪电侠"什么叫时序
- Hive的窗口函数
VictorWuuu
hivehadoop数据仓库
Hive的窗口函数(WindowFunctions)是其SQL功能的核心亮点之一,用于在分组数据上执行计算,同时保留原始表的行数(不压缩分组)。窗口函数特别适用于排名分析、趋势计算、移动统计等复杂场景,是处理时间序列数据和多维分析的利器。一、窗口函数的核心概念窗口函数的语法结构:function_name(arg1,arg2...)OVER([PARTITIONBYcol1,col2...]--分
- InfluxDB 核心字段解析与 SQL 对应关系深度剖析
一、InfluxDB数据模型全景解析作为专为时间序列数据设计的高性能数据库,InfluxDB通过独特的分层架构实现了高效存储与查询。其核心数据模型由以下关键组件构成:1.基础容器:Database功能定位:数据库层级的逻辑容器,用于隔离不同业务领域的数据。SQL映射:等同于传统关系型数据库中的Database概念,通过CREATEDATABASE语句创建。设计原则:建议按业务模块划分数据库,如监控
- 数据分析必备神器:Pandas入门实战指南(零基础也能起飞[特殊字符])
文章目录一、为什么Pandas是数据分析的神器?Pandas的三大超能力:二、5分钟极速上手(附实战代码)三、职场人必学的五个骚操作3.1数据清洗黑科技3.2多文件合并技巧3.3智能分组统计3.4时间序列分析3.5表格颜值改造四、避坑指南(血泪教训)4.1内存爆炸陷阱4.2索引混乱之谜4.3SettingWithCopy幽灵警告五、学习路线图(亲测有效)朋友们!!!今天咱们聊聊Python数据分析
- canvas使用滑杆交互_如何使用JavaScript和Canvas开发交互式文件上传器
cukw6666
jsjavascriptcssvuepythonViewUI
canvas使用滑杆交互介绍(Introduction)Howniceorfuncanwemaketheinteractionsonawebsiteorwebapplication?Thetruthisthatmostcouldbebetterthanwedotoday.Forexample,whowouldnotwanttouseanapplicationlikethis:我们可以在网站或Web
- 从实习生到AI原生应用架构师:Copilot学习路径与成长经验
AI量化价值投资入门到精通
AI-nativecopilot学习ai
好的,这是一篇以“从实习生到AI原生应用架构师:Copilot学习路径与成长经验”为主题的技术博客文章,希望能满足你的要求。从实习生到AI原生应用架构师:Copilot驱动的学习路径与成长经验全解析一、引言(Introduction)钩子(TheHook)“嘿,实习生,这个API文档有点复杂,你先研究一下,下周给我一个调用示例?”还记得刚入职时,面对密密麻麻的技术文档和陌生的代码库,那种手足无措、
- 区块链的技术
区块链的技术定义区块链的存储基于分布式数据库;数据库是区块链的数据载体,区块链是交易的业务逻辑载体;区块链按时间序列化区块数据,整个网络有一个最终确定状态;区块链只对添加有效,对其他操作无效;交易基于非对称加密的公私钥验证;区块链网络要求拜占庭将军容错;共识算法能够“解决”双花问题。区块链的核心技术组成P2P网络协议一般P2P网络技术要解决两个主要问题,第一是资源定位,第二是资源获取,其中节点发现
- LSTM学习笔记
LSTM的基本概念LSTM(LongShort-TermMemory)是一种特殊的循环神经网络(RNN),专门设计用于解决传统RNN在处理长序列数据时出现的梯度消失或梯度爆炸问题。LSTM通过引入门控机制,能够有效地捕捉长期依赖关系,广泛应用于自然语言处理、时间序列预测等领域。LSTM的核心结构LSTM的核心在于其记忆单元(MemoryCell)和三个门控机制:输入门(InputGate)、遗忘门
- 日入一词_120 present [verb]
cppUncleSix
ThischapterpresentedabriefoverviewofSQLServerpartitioning,includinganintroductiontothekeyconceptsandtermsneededtogainageneralunderstandingofthepartitioningprocess.verb/prɪˈzɛnt/1togivesomethingtosomeo
- 11、时间序列机器学习与经典模型入门
jam55
时间序列机器学习ARIMA
时间序列机器学习与经典模型入门时间序列分析在众多领域都有着广泛的应用,如经济学、气象学等。机器学习为时间序列分析提供了强大的工具,能够基于数据做出系统、可重复且经过验证的决策。下面将介绍时间序列机器学习的相关内容以及经典的时间序列模型。1.时间序列机器学习库在实际应用中,优秀的算法需要易于使用且可靠的软件实现。Python提供了许多可靠的时间序列机器学习库,以下是一些监督式回归和分类算法的实现情况
- Python 现代时间序列预测第二版(五)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/22eab741fce9c15dfad894ecf37bdd51译者:飞龙协议:CCBY-NC-SA4.0第十七章:概率预测及更多在整本书中,我们学习了生成预测的不同技术,包括一些经典方法,使用机器学习以及一些深度学习架构。但我们一直在关注一种典型的预测问题——为连续时间序列生成点预测,并且没有层级关系且历史数据足够丰富。我们之所以这样做,是因为这
- JWT 翻译
lsswear
学习
jwt官网:JSONWebTokenIntroduction-jwt.iohttps://jwt.io/introduction标准RFC7519:https://datatracker.ietf.org/doc/html/rfc7519#section-4.1https://datatracker.ietf.org/doc/html/rfc7519#section-4.1JWT定义JWT全称JS
- 【论文蒸馏】Recent Advances in Speech Language Models: A Survey
Greener_Pat
论文蒸馏语言模型人工智能AudioLM
AbstractLLM蓬勃发展,但从交互的自然性上看语音大模型(SpeechLM)有巨大的发展空间。直接的方法是ASR(语音转文字)+LLM+TTS(文字转语音),但是这样有其固有的限制,而端到端的SpeechLM表现更好,本文及其方法论做了一个概览的综述1.Introduction大语言模型提供了强大的AI基础支架,在其它领域有着广泛应用。但交互上不自然,所以需要声学大模型。一种直接的实现方式是
- 基于SVm和随机森林算法模型的中国黄金价格预测分析与研究
python编程狮
支持向量机算法随机森林python机器学习人工智能
摘要本研究基于回归模型,运用支持向量机(SVM)、决策树和随机森林算法,对中国黄金价格进行预测分析。通过历史黄金价格数据的分析和特征工程,建立了相应的预测模型,并利用SVM、决策树和随机森林算法进行训练和预测。首先,通过对黄金价格时间序列数据的探索性分析,发现黄金价格存在一定的趋势和季节性变化。随后,进行了数据预处理和特征选择,为建立准确的预测模型奠定了基础。分别使用SVM、决策树和随机森林算法建
- 时序数据库主流产品概览
时序数据说
时序数据库数据库物联网iotdb大数据
时序数据库(TimeSeriesDatabase,TSDB)是专为处理时间序列数据优化的数据库系统,近年来随着物联网(IoT)、金融科技、工业互联网等领域的快速发展而备受关注。本文将介绍当前主流的时序数据库产品。一、时序数据库概述时序数据是带时间戳记录的数据点序列,具有以下特点:数据时间属性强数据通常为追加写入近期数据访问频率高于历史数据数据量通常非常庞大,需要高效的压缩技术时序数据库针对这些特点
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&