- 轻松入门 NumPy(二):数组的升维降维操作
Sunhen_Qiletian
numpy
目录引言一.数组的维度、形状和轴1.1数组的维度(Dimensions)1.2数组的形状(Shape)1.3数组的轴(Axes)二.数组的升维(DimensionalityExpansion)2.1升维的操作方法2.2升维的实际应用三.数组的降维(DimensionalityReduction)3.1降维的操作方法1.使用reshape()降维2.flatten()方法3.2降维的实际应用四.总结
- Python 实现基于SDAE堆叠去噪自编码器的数据分类预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
Pythonpython分类开发语言人工智能大数据深度学习机器学习
目录Python实现基于SDAE堆叠去噪自编码器的数据分类预测的详细项目实例...1项目背景介绍...2项目目标与意义...2目标...2意义...3项目挑战及解决方案...3噪声数据处理...3特征提取与降维...3模型过拟合问题...4训练时间与计算资源...4数据不平衡问题...4项目特点与创新...4去噪自编码器的堆叠应用...4多层次特征学习...4噪声抑制机制...4模型自动优化...
- day 34 打卡
weixin_39908253
AI学习笔记python机器学习
day21常见的降维算法#先运行之前预处理好的代码importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings('ignore')#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']pl
- Scikitlearn:Python机器学习库
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-Scikit-learn:Python机器学习库1.背景介绍1.1什么是Scikit-learnScikit-learn是一个基于Python语言的开源机器学习库。它建立在NumPy、SciPy和matplotlib等优秀的科学计算库之上,为用户提供了一系列高效的数据挖掘和数据分析工具,涵盖了分类、回归、聚类、降维、模型选择和预处理等机器学习的各个方面。Scikit-learn的目标是提供一个高
- 想得开:一念之转跳出来, “会当凌绝顶,一览众山小” ,降维打击
王明鹏
看过《三体》的朋友对于“降维打击”非常熟悉,地球文明乃至三体文明,在歌者眼里不过用橡皮擦拭掉的小事情,至多用“二向箔”进行二维化,这就是高纬度文明的厉害。打个比方,就如同我们对待蚂蚁一样,平时不去攻击不是不能,只是没有必要罢了,如果需要采取降维打击很容易,这就是维度差距,远比代差厉害多。因此,想得开的可操作性技术就是“升维思考,降维打击”,举个朋友分享例子。朋友晚饭后不想刷碗,老公对儿子说由他俩刷
- 【RAG优化】RAG应用中图文表格混合内容的终极检索与生成策略
kakaZhui
大模型实践之知识库RAGAIGCRAGLLM人工智能算法
1.引言:超越纯文本,RAG的“富文本”挑战传统的RAG应用大多将文档视为纯文本流。这种“降维打击”式的处理方式,在面对图文表格混合的富文本文档时,会直接导致信息降级和丢失:图表被忽略:一张信息量巨大的趋势图、架构图或饼状图,在文本提取后可能只留下一句苍白的标题(如“图3-1:年度销售额增长”),甚至完全消失。表格结构错乱:如前一篇博客所述,复杂表格被解析成无意义的字符串拼接。图文关联断裂:文本中
- 【机器学习】必会降维算法之:独立成分分析(ICA)
Carl_奕然
机器学习算法人工智能
独立成分分析(ICA)1、引言2、独立成分分析(ICA)2.0引言2.1定义2.2应用场景2.3核心原理2.4实现方式2.5算法公式2.6代码示例3、总结1、引言小屌丝:鱼哥,最近胡塞武装很哇塞啊。小鱼:你什么时候开始关注军事了?小屌丝:这…还用关注吗?都上新闻了。小鱼:嗯,那你知道胡塞武装为什么这么厉害吗?小屌丝:额…当然是光脚不怕穿鞋的。小鱼:…你可真是…小屌丝:真是啥?小鱼:一个字,自己体会
- AI产品经理面试宝典第18天:AI思维矩阵构建与实战应用面试题与答法
TGITCIC
AI产品经理一线大厂面试题产品经理面试AI产品经理面试大模型产品经理面试AI面试大模型面试
如何构建AI思维矩阵?产品经理的"降维攻击"密码面试官:请解释什么是AI思维矩阵?作为产品经理如何构建这种思维?你的回答:AI思维矩阵不是技术架构,而是产品经理在AI时代的核心认知框架。它包含四个关键维度:软硬结合创新:如智能音箱通过硬件采集语音数据,软件优化交互体验,形成闭环数据驱动决策:在智能客服场景中,通过用户对话数据优化意图识别模型,实现NLU准确率提升30%生态协同视角:以智能家居为例,
- AI大模型训练的云原生实践:如何用Kubernetes指挥千卡集群?
当你的团队还在手动拼装显卡集群时,聪明人早已教会Kubernetes自动调度千卡。就像交响乐团需要指挥家,万级GPU需要云原生调度艺术。深夜的机房,硬件工程师老张盯着监控屏上跳动的红色警报——手工组装的千卡集群再次因单点故障崩溃。而隔壁团队通过Kubernetes调度的百卡集群,训练效率竟高出他们47%。这不是魔法,而是云原生调度的降维打击。一、千卡训练:为什么传统方法行不通?想象指挥没有乐谱的千
- 【常见滤波器】PCL 点云投影到拟合平面
X-Vision
《PCL算法案例开发》平面3dpcl计算机视觉算法点云
PCL点云投影到拟合平面-原理、实现与最佳实践目录平面投影的核心原理⚙️PCL平面投影架构基础平面投影实现高级投影技术与优化投影质量评估与分析️工程应用案例⚠️常见问题与解决方案可视化与调试平面投影的核心原理数学原理与几何概念点云投影到拟合平面是将三维点云数据降维到二维平面的过程,核心思想是正交投影:平面方程:ax+by+cz+d=0ax+by+cz+d=0ax+by+cz+d=0平面法向量:n=
- 前沿交叉:Fluent与深度学习驱动的流体力学计算体系
m0_75133639
流体力学深度学习人工智能航空航天fluent流体力学材料科学CFD
基础模块流体力学方程求解1、不可压缩N-S方程数值解法(有限差分/有限元/伪谱法)·Fluent工业级应用:稳态/瞬态流、两相流仿真(圆柱绕流、入水问题)·Tecplot流场可视化与数据导出2、CFD数据的AI预处理·基于PCA/SVD的流场数据降维·特征值分解与时空特征提取深度学习核心3.物理机理嵌入的神经网络架构·物理信息神经网络(PINN):将N-S方程嵌入损失函数(JAX框架实现)·神经常
- 脑电分析入门指南:信号处理、特征提取与机器学习
Ao000000
信号处理机器学习人工智能
脑电分析入门指南一、为什么要研究脑电1.课题目标(解决什么问题)2.输入与输出二、脑电分析的整体流程三、每一步详解1.数据采集2.预处理3.特征提取4.特征选择/降维5.分类与识别四、研究过程中遇到的挑战与解决方法五、学习感受一、为什么要研究脑电1.课题目标(解决什么问题)本课题旨在通过对脑电(EEG)的采集与分析,提取有用的神经信息,实现对某类脑状或行为的识别/预测/评估。例如:情绪识别、疾病诊
- 从0开始学习计算机视觉--Day08--卷积神经网络
之前我们提到,神经网络是通过全连接层对输入做降维处理,将输入的向量通过矩阵和激活函数进行降维,在神经元上输出激活值。而卷积神经网络中,用卷积层代替了全连接层。不同的是,这里的输入不再需要降维,而是可以保留输入的空间结构,例如输入的是32×32×3的图片,在全连接层中是3072×1的向量,而卷积层里则保持不变。这里的改变的地方是对于同样的WX的函数形式,这里是把5×5×3的权重矩阵(也叫卷积核)向量
- 机器学习知识点复习 上(保研、复试、面试)百面机器学习笔记
机器学习知识点复习上一、特征工程1.为什么需要对数值类型的特征做归一化?2.文本表示模型3.图像数据不足的处理方法二、模型评估1.常见的评估指标2.ROC曲线3.为什么在一些场景中要使用余弦相似度而不是欧氏距离?4.过拟合和欠拟合三、经典算法1.支持向量机SVM2.逻辑回归3.决策树四、降维1.主成分分析(PrinalComponentsAnalysis,PCA)降维中最经典的方法2.线性判别分析
- 用AI实现“抢券自由”:手把手教你打造智能抢单机器人
目录一、手速不够?抢券党的真实困境二、技术揭秘:RPA+AI如何成为“抢券外挂”1.什么是RPA(机器人流程自动化)?2.AI工作流的降维打击三、实战教学:20行代码打造AI抢券机器人1.工具准备2.智能脚本核心代码四、高阶技巧:让机器人更“聪明”的3个秘密1.视觉识别加持2.多账号并行操作3.智能避坑策略五、技术延伸:RPA+AI还能做什么?六、避坑指南:新手常见问题解答一、手速不够?抢券党的真
- 【机器学习|学习笔记】特征选择(Feature Selection)和特征提取(Feature Extraction)都是用于降维、提升模型性能和泛化能力的重要手段。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记人工智能神经网络
【机器学习|学习笔记】特征选择(FeatureSelection)和特征提取(FeatureExtraction)都是用于降维、提升模型性能和泛化能力的重要手段。【机器学习|学习笔记】特征选择(FeatureSelection)和特征提取(FeatureExtraction)都是用于降维、提升模型性能和泛化能力的重要手段。文章目录【机器学习|学习笔记】特征选择(FeatureSelection)和
- OpenCV图像边缘检测
慕婉0307
opencv基础opencv人工智能计算机视觉
一、边缘检测基础概念边缘检测是图像处理中最基本也是最重要的操作之一,它能识别图像中亮度或颜色急剧变化的区域,这些区域通常对应物体的边界。OpenCV提供了多种边缘检测方法,从传统的算子到基于深度学习的现代方法。1.1为什么需要边缘检测?数据降维:将图像转换为边缘表示可大幅减少数据量特征提取:边缘是图像最重要的视觉特征之一预处理步骤:为物体识别、图像分割等高级任务做准备噪声抑制:某些边缘检测方法具有
- 《dlib库中的聚类》算法详解:从原理到实践
A小庞
算法算法聚类数据挖掘机器学习c++
一、dlib库与聚类算法的关联1.1dlib库的核心功能dlib是一个基于C++的机器学习和计算机视觉工具库,其聚类算法模块提供了多种高效的无监督学习工具。聚类算法在dlib中主要用于:数据分组:将相似的数据点划分为同一簇。特征分析:通过聚类结果发现数据潜在的结构。降维辅助:结合聚类结果进行特征选择或数据压缩。dlib支持的经典聚类算法包括K-Means和ChineseWhispers,适用于图像
- 3 大语言模型预训练数据-3.2 数据处理-3.2.2 冗余去除——2.SimHash算法文本去重实战案例:新闻文章去重场景
SimHash算法文本去重实战案例:新闻文章去重场景一、案例背景与目标二、具体实现步骤与示例1.**待去重文本示例**2.**步骤1:文本预处理与特征提取**3.**步骤2:特征向量化与哈希映射**4.**步骤3:特征向量聚合**5.**步骤4:降维生成SimHash值**6.**步骤5:计算汉明距离与去重判断**三、工程化实现代码(Python简化示例)四、案例总结与优化点一、案例背景与目标假设
- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- 《AI颠覆编码:GPT-4在编译器层面的奇幻漂流》的深度技术解析
踢足球的,程序猿
人工智能pythonc语言
一、传统编译器的黄昏:LLVM面临的AI降维打击1.1经典优化器的性能天花板//LLVM循环优化Pass传统实现(LoopUnroll.cpp)voidLoopUnrollPass::runOnLoop(Loop*L){unsignedTripCount=SE->getSmallConstantTripCount(L);if(!TripCount||TripCount>UnrollThreshol
- 3 大语言模型预训练数据-3.2 数据处理-3.2.2 冗余去除——1.SimHash算法处理冗余信息的核心原理
SimHash算法处理冗余信息的核心原理一、SimHash算法的定位与核心目标二、SimHash算法的核心原理与执行流程1.**文本预处理与特征提取**2.**特征向量化与哈希映射**3.**特征向量聚合**4.**降维生成SimHash值**5.**相似性判断与冗余过滤**三、SimHash处理冗余信息的核心优势四、实际应用中的优化策略五、SimHash的局限性与补充方案一、SimHash算法的
- 【AI时代生死局】Python程序员如何靠这3招逆天改命?(附免费转型资源包)
骆驼_代码狂魔
程序员的生存人工智能python开发语言决策树
开篇暴击:程序员正在经历的「降维打击」https://via.placeholder.com/600x300?text=AI%E5%8F%96%E4%BB%A3%E4%BA%BA%E7%B1%BB%E7%BC%96%E7%A8%8B%E8%BF%9B%E5%BA%A6%E8%A1%A8"当你还在纠结Python语法时,AI已经能3秒生成整个电商系统..."(用具体数据增强可信度:GitHubCop
- 八种常见的神经网络介绍
EdmundXjs
技术专栏神经网络人工智能深度学习
在深度学习的世界里,各种神经网络模型层出不穷,每一种都有其独特的魅力和优势。今天,以下是八种常见的神经网络模型及其特点介绍,让我们来看看它们是如何在人工智能领域大放异彩的。概述(八大神经网络)卷积神经网络(CNN):适用于图像、音频等网格数据处理。通过卷积层提取局部特征,池化层降维,广泛用于图像分类、目标检测。特点是参数共享和权值的局部连接,减少了模型复杂度。循环神经网络(RNN):擅长处理序
- Python打卡训练营day20-奇异值SVD分解
sak77
python打卡训练营python机器学习奇异值分解SVD
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- Pandas能进行数据降维?新手如何简化分析模型?
程序化交易助手
量化软件量化投资程序化交易Python量化软件PTradeQMT量化交易量化炒股deepseek
Pandas能进行数据降维?新手如何简化分析模型?引言在量化交易的世界里,数据是一切分析的基础。但面对海量的数据,如何快速有效地提取关键信息,简化分析模型,是每个新手都需要面对的挑战。今天,我们就来聊聊如何利用Pandas这个强大的Python库来进行数据降维,以及如何简化我们的分析模型。Pandas与数据降维Pandas是Python中用于数据分析和操作的一个库,它提供了丰富的数据结构和数据分析
- 深度学习笔记
疯狂成瘾者
深度学习笔记人工智能
文章目录聚类导入模块生成模拟数据建立并训练K-Means聚类模型创建图形绘制散点图(聚类结果)获取聚类中心可视化聚类中心设置图形标题和标签输出效果数据降维一、常见的数据降维方法二、Python降维示例(用PCA将3D数据降至2D)✅第1部分:导入模块✅第2部分:生成模拟数据✅第3部分:PCA降维处理✅第4部分:开始绘图✅第5部分:绘制散点图✅第6部分:完善图像细节并显示✨最终效果数据降维的作用✅一
- python打卡day21
荣582
python学习打卡python开发语言
@疏锦行自由作业:探索下什么时候用到降维?降维的主要应用?或者让ai给你出题,群里的同学互相学习下。可以考虑对比下在某些特定数据集上t-sne的可视化和pca可视化的区别。fromsklearn.manifoldimportTSNEfromsklearn.decompositionimportPCAimportmatplotlib.pyplotasplt#假设X是特征数据,y是标签数据#进行PCA
- JavaScript 神器 reduce():从入门到精通
满分观察网友z
JSjavascript开发语言ecmascript
JavaScript神器reduce():从入门到精通,彻底掌握数组的“降维打击”嘿,各位前端同学!在我们的日常开发中,和数组打交道就像呼吸一样自然。我们用forEach遍历,用map转换,用filter筛选。但当需求变得复杂,比如“计算购物车商品总价”、“统计投票结果”或者“将二维数组展平”时,你是否曾用一连串的for循环和临时变量把自己绕晕?别担心,今天我们要聊的,就是专门解决这类问题的“终极
- 机器学习速成课程----数据准备
oceanstonetree
python人工智能机器学习教程
目录在7天内使用Python进行数据准备。第1课:数据准备的重要性第2课:通过插补填充缺失值第3课:使用RFE选择特征第4课:使用规范化缩放数据第5课:使用热编码(One-Hot)转换类别第6课:使用kBins将数字转换为类别第7课:使用PCA进行降维在在7天内使用Python进行数据准备。数据准备涉及将原始数据转换为更适合建模的形式。数据准备可能是预测建模项目中最重要的部分,也是最耗时的过程,尽
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi