有三个文件,分别是 training_label.txt、training_nolabel.txt、testing_data.txt
training_label.txt:有标签的训练数据(句子配上 0 or 1,+++$+++ 只是分隔符号,不要理它)
e.g., 1 +++$+++ are wtf … awww thanks !
training_nolabel.txt:没有标签的训练数据(只有句子),用来做半监督学习
ex: hates being this burnt !! ouch
testing_data.txt:你要判断测试数据里面的句子是 0 or 1
id,text
0,my dog ate our dinner . no , seriously … he ate it .
1,omg last day sooon n of primary noooooo x im gona be swimming out of school wif the amount of tears am gona cry
2,stupid boys … they ’ re so … stupid !
无
!pip install gensim==3.3.0
path_prefix = "./"
# 用来过滤警告
import warnings
warnings.filterwarnings('ignore')
# utils.py
# 这个块用来先定义一些等等常用到的函数
import paddle
import numpy as np
import pandas as pd
paddle.disable_static()
def load_training_data(path='training_label.txt'):
# 把训练时需要的数据读进来
# 如果是 'training_label.txt',需要读取标签,如果是 'training_nolabel.txt',不需要读取标签
if 'training_label' in path:
with open(path, 'r') as f:
lines = f.readlines()
lines = [line.strip('\n').split(' ') for line in lines]
x = [line[2:] for line in lines]
y = [line[0] for line in lines]
return x, y
else:
with open(path, 'r') as f:
lines = f.readlines()
x = [line.strip('\n').split(' ') for line in lines]
return x
def load_testing_data(path='testing_data'):
# 把测试时需要的数据读进来
with open(path, 'r') as f:
lines = f.readlines()
X = ["".join(line.strip('\n').split(",")[1:]).strip() for line in lines[1:]]
X = [sen.split(' ') for sen in X]
print("X", X)
return X
def evaluation(outputs, labels):
# outputs => probability (float)
# labels => labels
outputs = paddle.to_tensor([1.0 if element>=0.5 else 0.0 for element in outputs])
labels = labels.squeeze(1)
correct = paddle.sum(paddle.cast(paddle.equal(outputs, labels), dtype="int64")).numpy()
return correct
# w2v.py
# 这个块是用来训练 word to vector 的词向量
# 注意!这个块在训练 word to vector 时是用 cpu,可能要花到 10 分钟以上
import os
import numpy as np
import pandas as pd
import argparse
from gensim.models import word2vec
from gensim.models import Word2Vec
def train_word2vec(x):
# 训练word to vector的词向量,iter=10即训练10轮
model = word2vec.Word2Vec(x, size=250, window=5, min_count=5, workers=12, iter=10, sg=1)
return model
if __name__ == "__main__":
print("loading training data ...")
train_x, y = load_training_data('work/rnn_data/training_label.txt')
train_x_no_label = load_training_data('work/rnn_data/training_nolabel.txt')
print("loading testing data ...")
test_x = load_testing_data('work/rnn_data/testing_data.txt')
#model = train_word2vec(train_x + train_x_no_label + test_x)
model = train_word2vec(train_x + test_x)
print("saving model ...")
# model.save(os.path.join(path_prefix, 'model/w2v_all.model'))
model.save(os.path.join(path_prefix, 'w2v_all.model'))
loading training data ...
# preprocess.py
# 这个块用来做数据的预处理
class Preprocess():
def __init__(self, sentences, sen_len, w2v_path="./w2v.model"):
self.w2v_path = w2v_path
self.sentences = sentences
self.sen_len = sen_len
self.idx2word = []
self.word2idx = {}
self.embedding_matrix = []
def get_w2v_model(self):
# 把之前训练好的 word to vec 模型读进来
self.embedding = Word2Vec.load(self.w2v_path)
self.embedding_dim = self.embedding.vector_size
def add_embedding(self, word):
# 把词加进 embedding,并赋予他一个随机生成的表示向量
# 词只会是 "" 或 ""
vector = np.random.uniform(size=(1, self.embedding_dim))
self.word2idx[word] = len(self.word2idx)
self.idx2word.append(word)
self.embedding_matrix = np.concatenate([self.embedding_matrix, vector], 0)
def make_embedding(self, load=True):
print("Get embedding ...")
# 取得训练好的 Word2vec词向量
if load:
print("loading word to vec model ...")
self.get_w2v_model()
else:
raise NotImplementedError
# 制作一个 word2idx 的 字典
# 制作一个 idx2word 的 列表
# 制作一个 word2vector 的 列表
for i, word in enumerate(self.embedding.wv.vocab):
# print('get words #{}'.format(i+1), end='\r')
#e.g. self.word2index['he'] = 1
#e.g. self.index2word[1] = 'he'
#e.g. self.vectors[1] = 'he' vector
self.word2idx[word] = len(self.word2idx)
self.idx2word.append(word)
self.embedding_matrix.append(self.embedding[word])
# print('')
# self.embedding_matrix = paddle.to_tensor(self.embedding_matrix)
self.embedding_matrix = np.array(self.embedding_matrix)
# 将 "" 跟 "" 加进 embedding 里面
self.add_embedding("" )
self.add_embedding("" )
# print("total words: {}".format(len(self.embedding_matrix)))
self.embedding_matrix = self.embedding_matrix.astype(np.float32)
return self.embedding_matrix
def pad_sequence(self, sentence):
# 将每个句子变成一样的长度
if len(sentence) > self.sen_len:
sentence = sentence[:self.sen_len]
else:
pad_len = self.sen_len - len(sentence)
for _ in range(pad_len):
sentence.append(self.word2idx["" ])
assert len(sentence) == self.sen_len
return sentence
def sentence_word2idx(self):
# 把句子里面的字转成相对应的索引
sentence_list = []
for i, sen in enumerate(self.sentences):
# print('sentence count #{}'.format(i+1), end='\r')
sentence_idx = []
for word in sen:
if (word in self.word2idx.keys()):
sentence_idx.append(self.word2idx[word])
else:
sentence_idx.append(self.word2idx["" ])
# 将每个句子变成一样的长度
sentence_idx = self.pad_sequence(sentence_idx)
sentence_list.append(sentence_idx)
return paddle.to_tensor(sentence_list)
def labels_to_tensor(self, y):
# 把标签转成张量
y = [float(label) for label in y]
return paddle.to_tensor(y)
# data.py
# 实现了dataset所需要的 '__init__', '__getitem__', '__len__'
# 好让 dataloader 能使用
import paddle
from paddle.io import Dataset
class TwitterDataset(Dataset):
"""
Expected data shape like:(data_num, data_len)
Data can be a list of numpy array or a list of lists
input data shape : (data_num, seq_len, feature_dim)
__len__ will return the number of data
"""
def __init__(self, X, y):
self.data = X
self.label = y
def __getitem__(self, idx):
if self.label is None:
return self.data[idx], paddle.to_tensor([1.])
return self.data[idx], self.label[idx]
def __len__(self):
return len(self.data)
# model.py
# 这个块是要拿来训练的模型
import paddle.nn as nn
class LSTM_Net(nn.Layer):
def __init__(self, embedding, embedding_dim, hidden_dim, num_layers, dropout=0.5, fix_embedding=True):
super(LSTM_Net, self).__init__()
# 制作 embedding layer
# self.embedding = torch.nn.Embedding(embedding.size(0),embedding.size(1))
# self.embedding.weight = torch.nn.Parameter(embedding)
# if fix_embedding:
# w_param_attrs = paddle.ParamAttr(trainable=False)
# else:
# w_param_attrs = paddle.ParamAttr(trainable=True)
# self.embedding = nn.Embedding((embedding.shape[0],embedding.shape[1]), param_attr= w_param_attrs)
self.embedding = nn.Embedding(embedding.shape[0],embedding.shape[1], sparse=True)
self.embedding.weight.set_value(embedding)
self.embedding.weight.requires_grad = False if fix_embedding else True
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.dropout = dropout
self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers)
self.classifier = nn.Sequential(nn.Dropout(dropout),
nn.Linear(hidden_dim, 1),
nn.Sigmoid() )
def forward(self, inputs):
inputs = self.embedding(inputs)
# print("embedding",inputs)
x, _ = self.lstm(inputs, None)
# x 的 维度 (batch, seq_len, hidden_size)
# 取用 LSTM 最后一层的隐藏状态
x = x[:, -1, :]
x = self.classifier(x)
return x
# train.py
# 这个块是用来训练模型的
def training(batch_size, n_epoch, lr, model_dir, train, valid, model):
model.train() # 将模型的模式设为 train,这样优化器就可以更新模型的参数
criterion = paddle.nn.loss.BCELoss() # 定义损失函数,这裡我们使用 二元交叉熵损失
t_batch = len(train)
v_batch = len(valid)
optimizer = paddle.optimizer.Adam(learning_rate=lr, parameters=model.parameters()) # 将模型的参数给优化器,并给予适当的学习率
total_loss, total_acc, best_acc = 0, 0, 0
for epoch in range(n_epoch):
total_loss, total_acc = 0, 0
# 这段做训练
for i, (inputs, labels) in enumerate(train):
optimizer.clear_grad() # 由于 loss.backward() 的梯度会累加,所以每次喂完一个 batch 后需要归零
outputs = model(inputs) # 将输入喂给模型
loss = criterion(outputs, labels) # 计算此时模型的训练损失
loss.backward() # 算损失的梯度
optimizer.step() # 更新训练模型的参数
correct = evaluation(outputs, labels) # 计算此时模型的训练准确率
total_acc += (correct / batch_size)
total_loss += loss.numpy()
print('[ Epoch{}: {}/{} ] loss:{:.3f} acc:{:.3f} '.format(
epoch+1, i+1, t_batch, loss.numpy()[0], correct[0]*100/batch_size), end='\r')
print('\nTrain | Loss:{:.5f} Acc: {:.3f}'.format(total_loss[0]/t_batch, total_acc[0]/t_batch*100))
# 这段做验证
model.eval() # 将模型的模式设为eval,这样模型的参数就会固定住
# with torch.no_grad():
total_loss, total_acc = 0, 0
for i, (inputs, labels) in enumerate(valid):
outputs = model(inputs) # 将输入喂给模型
loss = criterion(outputs, labels) # 计算此时模型的验证损失
correct = evaluation(outputs, labels) # 计算此时模型的验证准确率
total_acc += (correct / batch_size)
total_loss += loss.numpy()
print("Valid | Loss:{:.5f} Acc: {:.3f} ".format(total_loss[0]/v_batch, total_acc[0]/v_batch*100))
if total_acc > best_acc:
# 如果验证的结果优于之前所有的结果,就把当下的模型存下来以备之后做预测时使用
best_acc = total_acc
#torch.save(model, "{}/val_acc_{:.3f}.model".format(model_dir,total_acc/v_batch*100))
paddle.save(model.state_dict(), "lstm_crf.pdparams")
paddle.save(optimizer.state_dict(), "lstm_crf.pdopt")
print('saving model with acc {:.3f}'.format(total_acc[0]/v_batch*100))
print('-----------------------------------------------')
model.train() # 将模型的模式设为 train,这样优化器就可以更新模型的参数(因为刚刚转成 eval 模式)
def testing(batch_size, test_loader, model):
model.eval()
ret_output = []
with paddle.no_grad():
for i, (inputs,labels) in enumerate(test_loader):
outputs = model(inputs)
outputs = [1 if element>=0.5 else 0 for element in outputs]
ret_output += outputs
return ret_output
# main.py
import os
import argparse
import numpy as np
from gensim.models import word2vec
from sklearn.model_selection import train_test_split
from paddle.io import BatchSampler, DataLoader
# 处理好各个数据的路径
train_with_label = os.path.join(path_prefix, 'work/rnn_data/training_label.txt')
train_no_label = os.path.join(path_prefix, 'work/rnn_data/training_nolabel.txt')
testing_data = os.path.join(path_prefix, 'work/rnn_data/testing_data.txt')
w2v_path = os.path.join(path_prefix, 'w2v_all.model') # 处理 word to vec model 的路径
# 定义句子长度、要不要固定 embedding、批次大小、要训练几个 epoch、学习率的值、模型的资料夹路径
sen_len = 20
fix_embedding = True # 保持训练时的嵌入不变
batch_size = 128
epoch = 5
lr = 0.001
# model_dir = os.path.join(path_prefix, 'model/') # 检查点模型的模型目录
model_dir = path_prefix # 检查点模型的模型目录
print("loading data ...") # 把 'training_label.txt' 跟 'training_nolabel.txt' 读进来
train_x, y = load_training_data(train_with_label)
train_x_no_label = load_training_data(train_no_label)
# 对 输入 跟 标签 做预处理
preprocess = Preprocess(train_x, sen_len, w2v_path=w2v_path)
embedding = preprocess.make_embedding(load=True)
train_x = preprocess.sentence_word2idx()
y = preprocess.labels_to_tensor(y)
# 制作一个模型的对象
model = LSTM_Net(embedding, embedding_dim=250, hidden_dim=150, num_layers=1, dropout=0.5, fix_embedding=fix_embedding)
# 把 数据 分为 训练数据 跟 验证数据
X_train, X_val, y_train, y_val = train_x[:180000], train_x[180000:], y[:180000], y[180000:]
# 把 数据 做成 dataset 供 dataloader 取用
train_dataset = TwitterDataset(X=X_train, y=y_train)
val_dataset = TwitterDataset(X=X_val, y=y_val)
# 把 数据 转成 batch of tensors
train_loader = DataLoader(dataset = train_dataset,
batch_size = batch_size,
shuffle = True,
places = paddle.CPUPlace())
val_loader = DataLoader(dataset = val_dataset,
batch_size = batch_size,
shuffle = False,
places = paddle.CPUPlace())
# 开始训练
training(batch_size, epoch, lr, model_dir, train_loader, val_loader, model)
# 开始测试模型并做预测
print("loading testing data ...")
test_x = load_testing_data(testing_data)
preprocess = Preprocess(test_x, sen_len, w2v_path=w2v_path)
embedding = preprocess.make_embedding(load=True)
test_x = preprocess.sentence_word2idx()
# print("test_x", test_x[0])
test_dataset = TwitterDataset(X=test_x, y=None)
# print("test_dataset", test_dataset[0])
test_loader = DataLoader(dataset = test_dataset,batch_size = batch_size,shuffle = False,
places = paddle.CPUPlace())
print('\nload model ...')
param_state_dict = paddle.load("lstm_crf.pdparams")
opt_state_dict = paddle.load("lstm_crf.pdopt")
model = LSTM_Net(embedding, embedding_dim=250, hidden_dim=150, num_layers=1, dropout=0.5, fix_embedding=fix_embedding)
model.set_state_dict(param_state_dict)
model.set_state_dict(opt_state_dict)
optimizer = paddle.optimizer.Adam(learning_rate=lr, parameters=model.parameters()) # 将模型的参数给优化器,并给予适当的学习率
optimizer.set_state_dict(opt_state_dict)
outputs = testing(batch_size, test_loader, model)
# 写到 csv 档案供上传 Kaggle
tmp = pd.DataFrame({"id":[str(i) for i in range(len(test_x))],"label":outputs})
print("save csv ...")
tmp.to_csv(os.path.join(path_prefix, 'predict.csv'), index=False)
print("Finish Predicting")
# 以下是使用命令行上传到 Kaggle 的方式
# 需要先 pip install kaggle、Create API Token,详细请看 https://github.com/Kaggle/kaggle-api 以及 https://www.kaggle.com/code1110/how-to-submit-from-google-colab
# kaggle competitions submit [competition-name] -f [csv file path]] -m [message]
# e.g., kaggle competitions submit ml-2020spring-hw4 -f output/predict.csv -m "......"
!pwd
!ls