- 《零基础入门AI:从图像梯度到凸包特征检测(OpenCV图像特征提取)》
竹子_23
OpenCV入门opencv人工智能计算机视觉
一、图像梯度处理:理解像素变化的本质1.1图像梯度基础图像梯度是计算机视觉中的核心概念,它描述了图像中像素强度的变化情况:梯度方向:像素值变化最剧烈的方向(垂直于边缘)梯度幅度:像素值变化的强度(值越大表示边缘越明显)物理意义:就像地形图中的等高线,梯度大的地方相当于陡坡,梯度小的地方相当于平地1.2垂直边缘提取垂直边缘是图像中物体左右边界形成的线条:特征:水平方向上像素值发生突变应用场景:文档扫
- 函数log_a|x|导数
图像特征:log_a|x|(蓝色实线):关于y轴对称在x=±1处经过(0,0)点当x→0⁺时y→∞,x→0⁻时y→∞当|x|→∞时y→∞1/(xlna)(红色虚线):当x→0⁺时y→∞,x→0⁻时y→∞当|x|→∞时y→0在MATLAB中绘制函数y=log_a∣x∣和y=1/xlna时,需要特别注意处理x=0处的奇点。deepseek%设置参数a=2;%对数底数(可修改)%定义域:使用对数空间
- 探秘VCSI:一款创新的视觉内容识别工具
探秘VCSI:一款创新的视觉内容识别工具是一个基于深度学习的开源项目,其主要目标是帮助开发者和数据科学家进行高效、精确的视觉内容识别。在这个数字时代,我们每天都被大量的图像和视频所包围,VCSI提供了强大的工具,使得机器能够理解这些媒体内容,从而打开了一扇全新的应用之门。技术解析VCSI基于现代神经网络架构,特别是卷积神经网络(CNNs),用于图像特征提取。它利用预训练模型,如VGG16和ResN
- 30ms 内定位包裹:陌讯迁移检测技术突破瓶颈
在物流分拣中心,包裹转移过程中的识别准确率直接影响分拣效率与错分率。传统视觉算法在面对包裹重叠、光照变化、条码污损等复杂场景时,常出现目标框漂移、类别误判等问题,某华东地区分拣中心曾反馈,其采用的开源YOLOv5模型在高峰时段漏检率高达12%,导致日均错分包裹超300件[实测数据来源:某物流企业2024年Q1报告]。技术解析:从单模态到多模态的架构革新传统包裹识别多依赖单一RGB图像特征,在复杂场
- 猫狗图像分类深度学习模型:VGG-13网络训练实战
本文还有配套的精品资源,点击获取简介:猫狗分类模型基于VGG-13网络,这是一个在ImageNet竞赛中获得认可的深度卷积神经网络。VGG-13的特点是其包含多个3x3卷积层和全连接层,它能够有效地提取复杂的图像特征,用以区分猫和狗。模型通过大量标记图像的训练,使权重和偏置得以优化,以实现高精度的分类。本文档的文件列表包括了模型训练后得到的权重和偏置,这些都是进行图像分类时的核心参数。1.VGG-
- SPGAN: Siamese projection Generative Adversarial Networks
这张生成的图像能检测吗
优质GAN模型训练自己的数据集人工智能生成对抗网络计算机视觉深度学习神经网络算法
简介简介:该论文针对传统GANs中鉴别器采用硬边际分类导致的误分类问题,提出了基于Siameseprojection网络的SPGAN方法。主要创新点包括:(1)设计Siameseprojection网络来测量特征相似性;(2)提出相似特征对抗学习框架,将相似性测量融入生成器和鉴别器的损失函数;(3)通过相似特征对抗学习,鉴别器能最大化真实图像和生成图像特征的差异性,生成器能合成包含更多真实图像特征
- 修改Spatial-MLLM项目,使其专注于无人机航拍视频的空间理解
神经网络15044
python神经网络算法无人机音视频机器学习人工智能算法架构
修改Spatial-MLLM项目,使其专注于无人机航拍视频的空间理解。以下是修改方案和关键代码实现:修改思路输入处理:将原项目的视频+文本输入改为单一无人机航拍视频/图像输入问题生成:自动生成空间理解相关的问题(无需用户输入文本)模型适配:调整视觉编码器处理航拍图像特征输出优化:聚焦空间关系、物体定位和场景结构的分析关键代码修改1.输入处理模块(video_processor.py)importc
- ComfyUI IPAdapter 技术解析:图像特征融合与角色一致性控制实践
迈火
人工智能深度学习aiAI作画图像处理stablediffusion
声明:本教程仅限于图像生成技术与工作流的研究探讨。使用者必须严格遵守《中华人民共和国民法典》第一千零一十九条等关于肖像权的法律法规。禁止将技术用于伪造身份、侵害他人肖像权或从事任何非法活动。因技术滥用导致的一切法律后果和责任,由使用者自行承担。大家好,作为一名深度使用ComfyUI的用户,今天将深入解析IPAdapter插件的核心功能与应用。IPAdapter是ComfyUI中实现图像特征融合和角
- 基于MATLAB图像特征识别及提取实现图像分类
jghhh01
机器学习算法人工智能
基于MATLAB的图形处理程序,可以进行图像特征识别及提取,进而实现图像分类。hog_svm.m,2276svm_images/test_image/1.jpg,20980svm_images/test_image/2.jpg,18246svm_images/test_image/3.jpg,13835svm_images/test_image/4.jpg,18539svm_images/test
- OpenCV边缘填充方式详解
慕婉0307
opencv基础opencv计算机视觉人工智能
一、边缘填充概述在图像处理中,边缘填充(BorderPadding)是一项基础而重要的技术,特别是在进行卷积操作(如滤波、边缘检测等)时,处理图像边缘像素需要用到周围的像素值。由于图像边缘的像素没有完整的邻域,因此需要通过某种方式对图像边界进行扩展。边缘填充的主要应用场景包括:图像滤波(如高斯滤波、中值滤波等)卷积神经网络(CNN)中的卷积层形态学操作(如膨胀、腐蚀)图像特征提取二、OpenCV中
- 感知框2D反投是咋回事?
SLAM必须dunk
自动驾驶人工智能深度学习机器学习自动驾驶机器人
一、感知框:“2D框反投”是咋回事?(以自动驾驶识别车辆为例)1.核心逻辑:从图像特征“反推”目标框简单说,先用算法在2D图像里识别特征(比如车辆的轮廓、颜色、纹理),再把这些特征对应的区域,用“反投影”思路框成2D矩形。目的是在单张摄像头画面里,标记出“疑似目标”的位置。2.类比理解(找停车场里的红色轿车)假设你开发一个“自动驾驶视觉感知模块”,要识别停车场里的红色轿车第一步(特征提取):算法学
- 深入研究YOLO算法改进中的注意力机制
周立-ric
本文还有配套的精品资源,点击获取简介:YOLO算法因其高效和准确而在实时目标检测领域备受青睐。注意力机制的引入对YOLO算法的性能提升起到了关键作用,尤其是通过关注图像关键区域来提高检测精度。注意力机制可以细分为通道注意力、空间注意力、自注意力、多尺度注意力和位置感知注意力等类型,每种类型的注意力机制都旨在优化模型对图像特征的理解和处理。本文档提供了一个包含实现这些注意力机制的代码的压缩包,并介绍
- 怎么对词编码进行可视化:Embedding Projector
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonembedding
怎么对词编码进行可视化:EmbeddingProjectorhttps://projector.tensorflow.org/EmbeddingProjector是用于可视化高维向量嵌入(如词向量、图像特征向量等)的工具,能帮你理解向量间的关系,下面以词向量分析和**简单自定义数据(比如特征向量)**为例,教你怎么用:一、词向量分析场景(以图中Word2Vec数据为例)1.加载数据与基础查看图里已
- 基于Python+OpenCV实现SIFT
2301_79809972
pythonpythonplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景与意义SIFT(Scale-InvariantFeatureTransform,尺度不变特征变换)是一种在计算机视觉中广泛应用的局部图像特征描述子。由于其具有尺度不变性、旋转不变性和对光照变化、仿射变换和噪声的鲁棒性,SIFT在图像匹配、物体识别、三维重建等领域
- 头歌之动手学人工智能-图像卷积特征提取
第1关:图像卷积特征提取任务描述本关任务:编写一个能使用卷积滤波提取图像特征的小程序。相关知识为了完成本关任务,你需要掌握:1.基本概念,2.如何使用卷积滤波提取图像特征。编程要求根据提示,在右侧编辑器补充代码,完成两个函数,计算并输出函数所返回特征数组的和。测试说明平台会对你编写的代码进行测试:测试输入:一张RGB图;预期输出:提取出特征数组的和。#-*-coding:utf-8-*-#导入相关
- 基于KAN+Transformer的专业领域建模方法论
乡土老农
transformer深度学习人工智能
一、专业领域KAN方法创新路径领域函数分解策略•数学建模:针对专业领域特性设计专用基函数组合•医学影像:采用小波变换基函数分解图像特征```pythonclassWaveletKAN(nn.Module):def__init__(self):self.wavelet_basis=nn.Parameter(torch.randn(8,32,3))#8通道小波基defforward(self,x):r
- SIFT 全面解析:原理、实现与应用
Hello.Reader
算法其他算法
1.引言1.1什么是SIFT?SIFT,全称为Scale-InvariantFeatureTransform(尺度不变特征变换),是一种用于图像特征检测和描述的经典算法。它通过提取图像中的局部关键点,并为每个关键点生成具有尺度和旋转不变性的描述子,使其能够在不同的图像中进行特征匹配。SIFT算法尤其适合处理视角变化、尺度变换、部分遮挡和光照变化的问题,因此被广泛应用于计算机视觉领域。1.2SIFT
- Python爬虫与图像识别:搜索引擎的多模态搜索
搜索引擎技术
搜索引擎实战python爬虫搜索引擎ai
Python爬虫与图像识别:搜索引擎的多模态搜索关键词:Python爬虫、图像识别、多模态搜索、搜索引擎、计算机视觉、深度学习、数据采集摘要:本文深入探讨了如何结合Python爬虫技术与图像识别算法构建多模态搜索引擎。我们将从基础概念出发,详细讲解爬虫系统设计、图像特征提取、多模态索引构建等核心技术,并通过实际案例展示如何实现一个能够同时处理文本和图像查询的搜索引擎系统。文章还将分析当前技术挑战和
- 【MATLAB源码】机器视觉与图像识别技术(4)---模式识别与视觉计数
§ꦿCFོ༉
机器视觉与图像识别技术计算机视觉算法人工智能图像处理matlab深度学习
系列文章目录第一篇文章:【MATLAB源码】机器视觉与图像识别技术—视觉系统的构成(视频与图像格式转换代码及软件下载)第二篇文章:【MATLAB源码】机器视觉与图像识别技术(2)—图像分割基础第三篇文章:【MATLAB源码】机器视觉与图像识别技术(2)续—图像分割算法第四篇文章:【MATLAB源码】机器视觉与图像识别技术(3)—数字形态学处理以及图像特征点提取模式识别与视觉计数
- 计算机视觉与深度学习 | 基于MATLAB的图像特征提取与匹配算法总结
单北斗SLAMer
程序语言设计(C语言C++MatlabPython等)图像处理matlab计算机视觉人工智能
基于MATLAB的图像特征提取与匹配算法全面指南图像特征提取与匹配基于MATLAB的图像特征提取与匹配算法全面指南一、图像特征提取基础特征类型分类二、点特征提取算法1.Harris角点检测2.SIFT(尺度不变特征变换)3.SURF(加速鲁棒特征)4.FAST角点检测5.ORB(OrientedFASTandRotatedBRIEF)三、区域特征提取算法1.MSER(最大稳定极值区域)2.Blob
- Python构建人脸识别系统实战项目
爱你不会累
本文还有配套的精品资源,点击获取简介:本项目详细阐述了如何使用Python语言和face_recognition库实现人脸识别系统。人脸识别技术基于比较人脸图像特征,用于身份验证和识别。该系统利用face_recognition库及其依赖的dlib和OpenCV进行人脸检测和识别,包括人脸检测、特征提取、数据库创建、人脸识别和系统优化等步骤。项目还可能包含示例代码、数据集、配置文件和文档,旨在向开
- 【视觉SLAM基础(二):特征点提取与匹配】
Unpredictable222
SLAM算法算法自动驾驶ubuntuc++笔记opencv
前言在视觉SLAM中,特征点是连接连续图像帧的桥梁,是视觉里程计的核心。本文将详细介绍特征点的提取与匹配方法,以及如何利用这些特征点估计相机运动。原理部分只是简单介绍,详细的介绍大家可以去看高翔老师的《视觉SLAM十四讲》。1.特征点提取1.1特征点基本概念一个好的图像特征应该具有:可重复性:在不同图像中能被重复检测到可区分性:不同特征有显著区别高效性:计算复杂度低局部性:对遮挡、光照变化等鲁棒1
- OpenCV 第7课 图像处理之平滑(一)
嵌入式老牛
树莓派之OpenCVopencv图像处理计算机视觉
1.图像噪声在采集、处理和传输过程中,数字图像可能会受到不同噪声的干扰,从而导致图像质量降低、图像变得模糊、图像特征被淹没,而图像平滑处理就是通过除去噪声来达到图像增强的目的。常见的图像噪声有椒盐噪声、高斯噪声等。1.1椒盐噪声椒盐噪声(Salt-and-pepperNoise)也称为脉冲噪声,是一种随机出现的白点或黑点,具体表现为亮的区域有黑色像素,或是暗的区域有白色像素,又或是两者皆有。下面左
- OpenCV CUDA模块图像特征检测与描述------图像中快速检测特征点类cv::cuda::FastFeatureDetector
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::cuda::FastFeatureDetector是OpenCV的CUDA加速模块中的一部分,用于在图像中快速检测特征点。FAST(FeaturesfromAcceleratedSegmentTest)算法是一种高效的角点检测算法,能够在保持较高精度的同时
- 【大模型面试每日一题】Day 23:如何设计一个支持多模态(文本+图像)的大模型架构?
是麟渊
LLMInterviewDaily面试每日一题面试架构职场和发展人工智能自然语言处理
【大模型面试每日一题】Day23:如何设计一个支持多模态(文本+图像)的大模型架构?题目重现面试官:我们需要构建一个同时处理文本和图像的多模态大模型,用于图文检索、视觉问答等任务。请设计该模型的核心架构,说明关键模块及其交互方式,并分析可能面临的技术挑战及解决方案。输入文本modality图像modality文本编码器图像编码器文本特征图像特征多模态融合模块任务输出/解码器生成文本/图像/决策..
- 机器学习第二十三讲:CNN → 用放大镜局部观察图片特征层层传递
kovlistudio
机器学习人工智能技术机器学习cnn人工智能
机器学习第二十三讲:CNN→用放大镜局部观察图片特征层层传递资料取自《零基础学机器学习》。查看总目录:学习大纲关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeekR1本地与线上满血版部署:超详细手把手指南CNN详解:图像理解的多层放大镜[^9-2]卷积神经网络(CNN)就像给计算机装备了显微镜+望远镜的组合套装,通过逐层放大观察图像特征。以"识别橘猫图片"为例:识别边缘轮廓捕捉
- 机器学习第二十三讲:CNN → 用放大镜局部观察图片特征层层传递
机器学习第二十三讲:CNN→用放大镜局部观察图片特征层层传递资料取自《零基础学机器学习》。查看总目录:学习大纲关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeekR1本地与线上满血版部署:超详细手把手指南CNN详解:图像理解的多层放大镜1卷积神经网络(CNN)就像给计算机装备了显微镜+望远镜的组合套装,通过逐层放大观察图像特征。以"识别橘猫图片"为例:graphTDA[输入图片
- H.264/AVC 变换量化编码核心技术拆解
码流怪侠
h.264AVC视频编解码变换编码量化编码DCTx264
变换编码视频压缩为什么需要变换:图像和视频信号在空间域中存在大量冗余。例如,平坦区域(如蓝天)或缓慢变化的区域(如草地)占据了大部分像素信息,这些区域在空间域中的像素值高度相关,绝大部分图像特征是平坦和变化缓慢区域占大部分,细节和内容突变占小部分,即图像中直流和低频占大部分,高频只占小部分,这样从空间域到频率域或变换域只会产生相关系数很小的变换系数。人眼对高频细节(如细微纹理或噪声)不敏感,但对低
- Pytorch之保存和加载预训练的模型
BlackMan_阿伟
Pytorchpython深度学习机器学习人工智能
在深度学习中会用到迁移学习的方法,也就是我们把在其它数据集上训练比较好的model拿到我们的模型上来进行finetune,这样避免了我们重新去花费时间去训练模型,比如vgg16提取图像特征的这个模型,大大节省了我们训练的时间。这个过程我们就涉及到加载预训练的模型,有的时候我们需要加载整个模型,有时候我们需要模型的一个部分,因此在本文中将会对在Pytroch这个框架中如何加载预训练的模型做以阐述。说
- 快速读文章-Adversarial Training Towards Robust Multimedia Recommender System
无意识积累中
推荐系统深度学习计算机视觉人工智能
摘要:随着网络上多媒体内容的普及,迫切需要开发能够有效利用多媒体数据中丰富信号的推荐解决方案。由于深度神经网络在表征学习中的成功,多媒体推荐的最新进展主要集中在探索深度学习方法以提高推荐精度上。然而,迄今为止,很少有人研究多媒体表示的健壮性及其对多媒体推荐性能的影响。本文对多媒体推荐系统的鲁棒性进行了研究。通过使用最先进的推荐框架和深度图像特征,我们证明了整个系统的鲁棒性不强,因此,对输入图像进行
- java短路运算符和逻辑运算符的区别
3213213333332132
java基础
/*
* 逻辑运算符——不论是什么条件都要执行左右两边代码
* 短路运算符——我认为在底层就是利用物理电路的“并联”和“串联”实现的
* 原理很简单,并联电路代表短路或(||),串联电路代表短路与(&&)。
*
* 并联电路两个开关只要有一个开关闭合,电路就会通。
* 类似于短路或(||),只要有其中一个为true(开关闭合)是
- Java异常那些不得不说的事
白糖_
javaexception
一、在finally块中做数据回收操作
比如数据库连接都是很宝贵的,所以最好在finally中关闭连接。
JDBCAgent jdbc = new JDBCAgent();
try{
jdbc.excute("select * from ctp_log");
}catch(SQLException e){
...
}finally{
jdbc.close();
- utf-8与utf-8(无BOM)的区别
dcj3sjt126com
PHP
BOM——Byte Order Mark,就是字节序标记 在UCS 编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输 字符"ZERO WIDTH NO-BREAK SPACE"。这样如
- JAVA Annotation之定义篇
周凡杨
java注解annotation入门注释
Annotation: 译为注释或注解
An annotation, in the Java computer programming language, is a form of syntactic metadata that can be added to Java source code. Classes, methods, variables, pa
- tomcat的多域名、虚拟主机配置
g21121
tomcat
众所周知apache可以配置多域名和虚拟主机,而且配置起来比较简单,但是项目用到的是tomcat,配来配去总是不成功。查了些资料才总算可以,下面就跟大家分享下经验。
很多朋友搜索的内容基本是告诉我们这么配置:
在Engine标签下增面积Host标签,如下:
<Host name="www.site1.com" appBase="webapps"
- Linux SSH 错误解析(Capistrano 的cap 访问错误 Permission )
510888780
linuxcapistrano
1.ssh -v
[email protected] 出现
Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).
错误
运行状况如下:
OpenSSH_5.3p1, OpenSSL 1.0.1e-fips 11 Feb 2013
debug1: Reading configuratio
- log4j的用法
Harry642
javalog4j
一、前言: log4j 是一个开放源码项目,是广泛使用的以Java编写的日志记录包。由于log4j出色的表现, 当时在log4j完成时,log4j开发组织曾建议sun在jdk1.4中用log4j取代jdk1.4 的日志工具类,但当时jdk1.4已接近完成,所以sun拒绝使用log4j,当在java开发中
- mysql、sqlserver、oracle分页,java分页统一接口实现
aijuans
oraclejave
定义:pageStart 起始页,pageEnd 终止页,pageSize页面容量
oracle分页:
select * from ( select mytable.*,rownum num from (实际传的SQL) where rownum<=pageEnd) where num>=pageStart
sqlServer分页:
 
- Hessian 简单例子
antlove
javaWebservicehessian
hello.hessian.MyCar.java
package hessian.pojo;
import java.io.Serializable;
public class MyCar implements Serializable {
private static final long serialVersionUID = 473690540190845543
- 数据库对象的同义词和序列
百合不是茶
sql序列同义词ORACLE权限
回顾简单的数据库权限等命令;
解锁用户和锁定用户
alter user scott account lock/unlock;
//system下查看系统中的用户
select * dba_users;
//创建用户名和密码
create user wj identified by wj;
identified by
//授予连接权和建表权
grant connect to
- 使用Powermock和mockito测试静态方法
bijian1013
持续集成单元测试mockitoPowermock
实例:
package com.bijian.study;
import static org.junit.Assert.assertEquals;
import java.io.IOException;
import org.junit.Before;
import org.junit.Test;
import or
- 精通Oracle10编程SQL(6)访问ORACLE
bijian1013
oracle数据库plsql
/*
*访问ORACLE
*/
--检索单行数据
--使用标量变量接收数据
DECLARE
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
BEGIN
select ename,sal into v_ename,v_sal
from emp where empno=&no;
dbms_output.pu
- 【Nginx四】Nginx作为HTTP负载均衡服务器
bit1129
nginx
Nginx的另一个常用的功能是作为负载均衡服务器。一个典型的web应用系统,通过负载均衡服务器,可以使得应用有多台后端服务器来响应客户端的请求。一个应用配置多台后端服务器,可以带来很多好处:
负载均衡的好处
增加可用资源
增加吞吐量
加快响应速度,降低延时
出错的重试验机制
Nginx主要支持三种均衡算法:
round-robin
l
- jquery-validation备忘
白糖_
jquerycssF#Firebug
留点学习jquery validation总结的代码:
function checkForm(){
validator = $("#commentForm").validate({// #formId为需要进行验证的表单ID
errorElement :"span",// 使用"div"标签标记错误, 默认:&
- solr限制admin界面访问(端口限制和http授权限制)
ronin47
限定Ip访问
solr的管理界面可以帮助我们做很多事情,但是把solr程序放到公网之后就要限制对admin的访问了。
可以通过tomcat的http基本授权来做限制,也可以通过iptables防火墙来限制。
我们先看如何通过tomcat配置http授权限制。
第一步: 在tomcat的conf/tomcat-users.xml文件中添加管理用户,比如:
<userusername="ad
- 多线程-用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
bylijinnan
java多线程
public class IncDecThread {
private int j=10;
/*
* 题目:用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
* 两个问题:
* 1、线程同步--synchronized
* 2、线程之间如何共享同一个j变量--内部类
*/
public static
- 买房历程
cfyme
2015-06-21: 万科未来城,看房子
2015-06-26: 办理贷款手续,贷款73万,贷款利率5.65=5.3675
2015-06-27: 房子首付,签完合同
2015-06-28,央行宣布降息 0.25,就2天的时间差啊,没赶上。
首付,老婆找他的小姐妹接了5万,另外几个朋友借了1-
- [军事与科技]制造大型太空战舰的前奏
comsci
制造
天气热了........空调和电扇要准备好..........
最近,世界形势日趋复杂化,战争的阴影开始覆盖全世界..........
所以,我们不得不关
- dateformat
dai_lm
DateFormat
"Symbol Meaning Presentation Ex."
"------ ------- ------------ ----"
"G era designator (Text) AD"
"y year
- Hadoop如何实现关联计算
datamachine
mapreducehadoop关联计算
选择Hadoop,低成本和高扩展性是主要原因,但但它的开发效率实在无法让人满意。
以关联计算为例。
假设:HDFS上有2个文件,分别是客户信息和订单信息,customerID是它们之间的关联字段。如何进行关联计算,以便将客户名称添加到订单列表中?
&nbs
- 用户模型中修改用户信息时,密码是如何处理的
dcj3sjt126com
yii
当我添加或修改用户记录的时候对于处理确认密码我遇到了一些麻烦,所有我想分享一下我是怎么处理的。
场景是使用的基本的那些(系统自带),你需要有一个数据表(user)并且表中有一个密码字段(password),它使用 sha1、md5或其他加密方式加密用户密码。
面是它的工作流程: 当创建用户的时候密码需要加密并且保存,但当修改用户记录时如果使用同样的场景我们最终就会把用户加密过的密码再次加密,这
- 中文 iOS/Mac 开发博客列表
dcj3sjt126com
Blog
本博客列表会不断更新维护,如果有推荐的博客,请到此处提交博客信息。
本博客列表涉及的文章内容支持 定制化Google搜索,特别感谢 JeOam 提供并帮助更新。
本博客列表也提供同步更新的OPML文件(下载OPML文件),可供导入到例如feedly等第三方定阅工具中,特别感谢 lcepy 提供自动转换脚本。这里有导入教程。
- js去除空格,去除左右两端的空格
蕃薯耀
去除左右两端的空格js去掉所有空格js去除空格
js去除空格,去除左右两端的空格
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>&g
- SpringMVC4零配置--web.xml
hanqunfeng
springmvc4
servlet3.0+规范后,允许servlet,filter,listener不必声明在web.xml中,而是以硬编码的方式存在,实现容器的零配置。
ServletContainerInitializer:启动容器时负责加载相关配置
package javax.servlet;
import java.util.Set;
public interface ServletContainer
- 《开源框架那些事儿21》:巧借力与借巧力
j2eetop
框架UI
同样做前端UI,为什么有人花了一点力气,就可以做好?而有的人费尽全力,仍然错误百出?我们可以先看看几个故事。
故事1:巧借力,乌鸦也可以吃核桃
有一个盛产核桃的村子,每年秋末冬初,成群的乌鸦总会来到这里,到果园里捡拾那些被果农们遗落的核桃。
核桃仁虽然美味,但是外壳那么坚硬,乌鸦怎么才能吃到呢?原来乌鸦先把核桃叼起,然后飞到高高的树枝上,再将核桃摔下去,核桃落到坚硬的地面上,被撞破了,于是,
- JQuery EasyUI 验证扩展
可怜的猫
jqueryeasyui验证
最近项目中用到了前端框架-- EasyUI,在做校验的时候会涉及到很多需要自定义的内容,现把常用的验证方式总结出来,留待后用。
以下内容只需要在公用js中添加即可。
使用类似于如下:
<input class="easyui-textbox" name="mobile" id="mobile&
- 架构师之httpurlconnection----------读取和发送(流读取效率通用类)
nannan408
1.前言.
如题.
2.代码.
/*
* Copyright (c) 2015, S.F. Express Inc. All rights reserved.
*/
package com.test.test.test.send;
import java.io.IOException;
import java.io.InputStream
- Jquery性能优化
r361251
JavaScriptjquery
一、注意定义jQuery变量的时候添加var关键字
这个不仅仅是jQuery,所有javascript开发过程中,都需要注意,请一定不要定义成如下:
$loading = $('#loading'); //这个是全局定义,不知道哪里位置倒霉引用了相同的变量名,就会郁闷至死的
二、请使用一个var来定义变量
如果你使用多个变量的话,请如下方式定义:
. 代码如下:
var page
- 在eclipse项目中使用maven管理依赖
tjj006
eclipsemaven
概览:
如何导入maven项目至eclipse中
建立自有Maven Java类库服务器
建立符合maven代码库标准的自定义类库
Maven在管理Java类库方面有巨大的优势,像白衣所说就是非常“环保”。
我们平时用IDE开发都是把所需要的类库一股脑的全丢到项目目录下,然后全部添加到ide的构建路径中,如果用了SVN/CVS,这样会很容易就 把
- 中国天气网省市级联页面
x125858805
级联
1、页面及级联js
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
&l