Python threading.thread()

1.添加线程可以使程序运行更快

它可与同属一个进程的其它线程共享进程所拥有的全部资源

2.主线程会等待所有的子线程结束后才结束

3.查看线程数量

length = len(threading.enumerate())
print('当前运行的线程数为:%d'%length)

4.线程参数及顺序

args 传递参数 threading.Thread(target=sing, args=(10, 100, 100))

kwargs传递参数 threading.Thread(target=sing, kwargs={“a”: 10, “b”:100, “c”: 100})

args 和 kwargs 传递参数 threading.Thread(target=sing, args=(10, ), kwargs={“b”: 100,“c”: 100})

(多线程程序的执行顺序是不确定的。当执行到sleep语句时,线程将被阻塞(Blocked),到sleep结束后,线程进入就绪(Runnable)状态,等待调度。而线程调度将自行选择一个线程执行。)

5. 守护线程

如果在程序中将子线程设置为守护线程,则该子线程会在主线程结束时自动退出,设置方式为thread.setDaemon(True),在thread.start()之前设置,默认是false,主线程结束时,子线程依然在执行。

什么是线程?

  • 线程也叫轻量级进程,是操作系统能够进行运算调度的最小单位,它被包涵在进程之中,是进程中的实际运作单位;
  • 线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其他线程共享进程所拥有的全部资源。一个线程可以创建和撤销另一个线程,同一个进程中的多个线程之间可以并发执行。

为什么要使用多线程?

  • 线程在程序中是独立的、并发的执行流。与分隔的进程相比,进程中线程之间的隔离程度要小,它们共享内存、文件句柄和其他进程应有的状态;
  • 因为线程的划分尺度小于进程,使得多线程程序的并发性高。进程在执行过程之中拥有独立的内存单元,而多个线程共享内存,从而极大的提升了程序的运行效率;
  • 线程比进程具有更高的性能,这是由于同一个进程中的线程都有共性,多个线程共享一个进程的虚拟空间。线程的共享环境包括进程代码段、进程的共有数据等,利用这些共享的数据,线程之间很容易实现通信;
  • 操作系统在创建进程时,必须为改进程分配独立的内存空间,并分配大量的相关资源,但创建线程则简单得多。因此,使用多线程来实现并发比使用多进程的性能高得要多。

优点:

  • 进程之间不能共享内存,但线程之间共享内存非常容易;
  • 操作系统在创建进程时,需要为该进程重新分配系统资源,但创建线程的代价则小得多。因此使用多线程来实现多任务并发执行比使用多进程的效率高;
  • python语言内置了多线程功能支持,而不是单纯地作为底层操作系统的调度方式,从而简化了python的多线程编程。

GIL  全局解释器

  • 在非python环境中,单核情况下,同时只能有一个任务执行。多核时可以支持多个线程同时执行。但是在python中,无论有多少个核同时只能执行一个线程。究其原因,这就是由于GIL的存在导致的。
  • GIL的全程是全局解释器,来源是python设计之初的考虑,为了数据安全所做的决定。某个线程想要执行,必须先拿到GIL,可以把GIL看做是“通行证”,并且在一个python进程之中,GIL只有一个。拿不到线程的通行证,并且在一个python进程中,GIL只有一个,拿不到通行证的线程,就不允许进入CPU执行。GIL只在cpython中才有,因为cpython调用的是c语言的原生线程,所以他不能直接操作cpu,而只能利用GIL保证同一时间只能有一个线程拿到数据。而在pypy和jpython中是没有GIL的。python在使用多线程的时候,调用的是c语言的原生过程。

python针对不同类型的代码执行效率不同

  • CPU密集型代码(各种循环处理、计算等),在这种情况下,由于计算工作多,ticks技术很快就会达到阀值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好;
  • IO密集型代码(文件处理、网络爬虫等设计文件读写操作),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序的执行效率)。所以python的多线程对IO密集型代码比较友好。

你可能感兴趣的:(Python,python,服务器)