Lecture 1 Introduction of Machine Deep Learning

Lecture 1: Introduction of Machine / Deep Learning

文章目录

  • Chapter 1 Introduction
    • Machine Learning ≈ \approx Looking for Function
    • Different types of Functions
      • Regression
      • Classification
      • Structured Learning
    • How to find a function? A Case Study
      • Function with Unknown Parameters
      • Define Loss from Training Data
      • Optimization
        • Gradient Descent
      • Training Procedure of Machine Learning
      • Linear models are too simple, we need more sophisticated modes.
        • Sigmoid Function
        • Training Procedure of Machine Learning
        • ReLU (Rectified Linear Unit)
    • Backpropagation
      • Gradient Descent
        • Chain Rule
      • Forward and Backward Pass
        • Forward Pass
        • Backward Pass
      • Summary

Chapter 1 Introduction

Machine Learning ≈ \approx Looking for Function

Lecture 1 Introduction of Machine Deep Learning_第1张图片

Different types of Functions

Regression

The function outputs a scalar.

Lecture 1 Introduction of Machine Deep Learning_第2张图片

Classification

Given options (classes), the function outputs the correct one.

Lecture 1 Introduction of Machine Deep Learning_第3张图片

Structured Learning

create something with structure (image, document) 让机器学会输出一些有特定结构的东西(例如,图片、文档等)

这部分的机器学习任务占比更高。

How to find a function? A Case Study

Function with Unknown Parameters

Lecture 1 Introduction of Machine Deep Learning_第4张图片

Define Loss from Training Data

Lecture 1 Introduction of Machine Deep Learning_第5张图片 Lecture 1 Introduction of Machine Deep Learning_第6张图片

Optimization

w ∗ , b ∗ = arg ⁡ min ⁡ w , b L w^*,b^*=\arg \min_{w,b} L w,b=argw,bminL

Gradient Descent

单个参数做梯度下降,比如将 b b b 作为常数处理

Lecture 1 Introduction of Machine Deep Learning_第7张图片 Lecture 1 Introduction of Machine Deep Learning_第8张图片 Lecture 1 Introduction of Machine Deep Learning_第9张图片

两个参数做梯度下降

Lecture 1 Introduction of Machine Deep Learning_第10张图片

Training Procedure of Machine Learning

Lecture 1 Introduction of Machine Deep Learning_第11张图片

Linear models are too simple, we need more sophisticated modes.

Lecture 1 Introduction of Machine Deep Learning_第12张图片

Sigmoid Function

Lecture 1 Introduction of Machine Deep Learning_第13张图片

Training Procedure of Machine Learning

Step 1 Function

Lecture 1 Introduction of Machine Deep Learning_第14张图片 Lecture 1 Introduction of Machine Deep Learning_第15张图片 Lecture 1 Introduction of Machine Deep Learning_第16张图片

未知参数都统称为 θ \theta θ

Lecture 1 Introduction of Machine Deep Learning_第17张图片

Step 2 Loss

  • Loss is a function of parameters L ( θ ) L(\theta) L(θ);
  • Loss means how good a set of value is.
Lecture 1 Introduction of Machine Deep Learning_第18张图片

Step 3 Optimization
θ ∗ = arg ⁡ min ⁡ θ L ,   θ = [ θ 1 θ 2 θ 3 ⋮ ] . \theta^*=\arg \min_{\theta}L,\ \theta= \begin{bmatrix} \theta_1\\ \theta_2\\ \theta_3\\ \vdots \end{bmatrix}. θ=argθminL, θ= θ1θ2θ3 .
Lecture 1 Introduction of Machine Deep Learning_第19张图片

Lecture 1 Introduction of Machine Deep Learning_第20张图片 Lecture 1 Introduction of Machine Deep Learning_第21张图片

ReLU (Rectified Linear Unit)

Lecture 1 Introduction of Machine Deep Learning_第22张图片 Lecture 1 Introduction of Machine Deep Learning_第23张图片

Backpropagation

Gradient Descent

Chain Rule

Lecture 1 Introduction of Machine Deep Learning_第24张图片

Forward and Backward Pass

Lecture 1 Introduction of Machine Deep Learning_第25张图片

Forward Pass

Lecture 1 Introduction of Machine Deep Learning_第26张图片

Backward Pass

Lecture 1 Introduction of Machine Deep Learning_第27张图片 Lecture 1 Introduction of Machine Deep Learning_第28张图片

Summary

你可能感兴趣的:(2022,Spring,李宏毅ML,深度学习,机器学习,python)