论文下载地址: https://ojs.aaai.org/index.php/AAAI/article/download/16533/16340
发表期刊:AAAI
Publish time: 2021
作者及单位:
数据集:
代码:
其他人写的文章
简要概括创新点: (有点难读懂,需要把Related Work都读一读)
- (1) this work proposes a Knowledge-aware Coupled Graph Neural Network (KCGN) (本文提出了一种知识感知的耦合图神经网络(KCGN))
- that jointly injects the inter-dependent knowledge (across items and users) into the recommendation framework. (该网络将跨项目和用户的相互依赖的知识联合注入到推荐框架中。)
- we further augment KCGN with the capability of capturing dynamic multi-typed user-item interactive patterns. (此外,我们还通过捕获动态多类型用户项交互模式的能力进一步增强了KCGN。)
- We propose to capture both user-user and item-item relations with the developed coupled graph neural network. Through the joint modeling of user- and item-wise dependent structures, our KCGN can enhance the social-aware user embeddings with the preservation of knowledge-aware cross-item relations in a more thorough way. (我们提出用所开发的耦合图神经网络捕捉用户和项目之间的关系。通过用户和项目相关结构的联合建模,我们的KCGN可以更彻底地保留知识感知的跨项目关系,从而增强社会感知的用户嵌入。)
- We propose a relation-aware graph neural module to encode the multi-typed user-item interactive patterns, and further incorporate the temporal information into the message passing kernel to enhance the learning of collaborative relations for recommendation. (我们提出了一个关系感知图神经模块来编码多类型用户项交互模式,并进一步将时间信息纳入消息传递内核,以增强推荐协作关系的学习。)
- (2) we propose KCGN, an end-to-end framework that naturally incorporates knowledge-aware item dependency into the social recommender systems. (我们提出了KCGN,这是一个端到端的框架,它自然地将知识感知项依赖性融入到社会推荐系统中。)
- KCGN unifies the user-user and item-item relation structure learning with a coupled graph neural network under a mutual information-based neural estimator (KCGN将用户-用户和项目-项目关系结构学习与基于互信息的神经估计器下的耦合图神经网络相结合).
- (3) Figure 3 shows the comparison results of different variants. We can see that the joint model KCGN achieves the best performance. As such, it is necessary to build a joint framework to simultaneously capture social dimension (users’ social influence), item dimension (knowledge-aware inter-item relations), multi-typed interactions, and time-aware user’s interest, for making recommendations. In addition, KCGN-UI performs worse than KCGN-U and KCGN-I, which again confirms the efficacy of our designed relation aggregation functions. (显示不同变体的比较结果。我们可以看到,联合模型KCGN实现了最佳性能。因此,有必要建立一个联合框架,同时捕获社会维度(用户的社会影响)、项目维度(知识感知的项目间关系)、多类型交互和时间感知的用户兴趣,以便提出建议。此外,KCGN-UI的性能不如KCGN-U和KCGN-I,这再次证实了我们设计的关系聚合函数的有效性。)
(1) In recent years, social recommendation which aims to exploit users’ social information for modeling users’ preferences in recommendations, has attracted significant attention (Liu et al. 2019). As has been stated in many social-aware recommendation literature (Wu et al. 2019a; Chen et al. 2019b), social influences between users have high impacts on users’ interactive behavior over items in various recommender scenarios, such as e-commence(Lin,Gao,and Li 2019) and online review platforms (Chen et al. 2020a). Hence, researchers propose to incorporate social ties into the collaborative filtering architecture as side information to characterize connectivity information across users. ((1) 近年来,旨在利用用户的社会信息来模拟用户在推荐中的偏好的社会推荐受到了广泛关注(Liu等人,2019年)。正如许多具有社会意识的推荐文献(Wu等人,2019a;Chen等人,2019b)所述,用户之间的社会影响对用户在各种推荐者场景中的互动行为有很大影响,如电子商务(Lin、Gao和Li 2019)和在线评论平台(Chen等人,2020a)。因此,研究人员建议将社会关系作为辅助信息纳入协作过滤体系结构,以描述用户之间的连通性信息。)
(2) The most common paradigm for state-of-the-art social recommender systems is to learn an embedding function, which unifies user-user and user-item relations into latent representations. (对于最先进的社会推荐系统来说,最常见的范例是学习嵌入函数,该函数将用户和用户项的关系统一到潜在的表示中。)
While these solutions have provided encouraging results, several key aspects have not been well addressed yet. In particular,
(3) First, in real-life scenarios, there typically exist relations between items which characterize item-wise fruitful semantics relatedness, and are helpful to understand user-item interactive patterns (Wang et al. 2019a). (首先,在现实生活场景中,项目之间通常存在关系,这些关系表征了项目之间富有成效的语义关联,并且有助于理解用户项目交互模式(Wang等人,2019a)。)
(4) Second, to simplify the model design, most of current social recommendation methods have thus far focused on modeling singular type of interactive relations between user and item. Yet, many practical recommendation scenarios may involve the diversity of users’ interaction over items (Cen et al. 2019; Xia et al. 2020). (第二,为了简化模型设计,目前大多数社会推荐方法都集中于对用户和项目之间的单一类型的交互关系进行建模。然而,许多实际的推荐场景可能涉及用户在项目上的交互多样性(Cen等人,2019年;Xia等人,2020年)。)
(5) Third, the time dimension of the social recommendation deserves more investigation, so as to capture behavior dynamics. Most of recent approaches ignore the dynamic nature of user-item interactions and assume that the factor influencing the interactive behavior is only the identity of items (Song et al. 2019).
(6) While intuitively useful to integrate the above dimensions into social recommendation frameworks, two unique technical challenges arise in achieving this goal. Specifically, graph-structured neural network can be applied to naturally model the topological information of social node instances, such as the graph-based convolutional network (Wu et al. 2019a) or attention mechanism (Wu et al. 2019b; Fan et al. 2019). (虽然直观上可以将上述维度集成到社会推荐框架中,但在实现这一目标时会遇到两个独特的技术挑战。具体而言,图结构神经网络可用于自然建模社会节点实例的拓扑信息,例如基于图的卷积网络(Wu等人2019a)或注意机制(Wu等人2019b;Fan等人2019)。)
(7) The Present Work. In light of the aforementioned motivations and challenges, we study the social recommendation problem by proposing the Knowledge-aware Coupled Graph Neural Network (KCGN). (目前的工作。鉴于上述动机和挑战,我们通过提出知识感知耦合图神经网络(KCGN)来研究社会推荐问题。)
(8) Our contributions can be highlighted as follows:
Figure 1: The architecture of the multi-typed interactive pat-tern modeling. ⊕ \oplus ⊕ denotes the element-wise addition.
In our experiments, we perform the performance comparison by considering the following baselines:
(1) We next perform experiments to evaluate the impact of the incorporation of multi-typed user-item interactions, user-wise relations, item-wise dependencies, and the temporal context, with the following five contrast variants of KCGN. (接下来,我们通过以下五种KCGN对比变体进行实验,以评估合并多类型用户项交互、用户关系、项依赖和时间上下文的影响。)
(2) Figure 3 shows the comparison results of different variants. We can see that the joint model KCGN achieves the best performance. As such, it is necessary to build a joint framework to simultaneously capture social dimension (users’ social influence), item dimension (knowledge-aware inter-item relations), multi-typed interactions, and time-aware user’s interest, for making recommendations. In addition, KCGN-UI performs worse than KCGN-U and KCGN-I, which again confirms the efficacy of our designed relation aggregation functions. (显示不同变体的比较结果。我们可以看到,联合模型KCGN实现了最佳性能。因此,有必要建立一个联合框架,同时捕获社会维度(用户的社会影响)、项目维度(知识感知的项目间关系)、多类型交互和时间感知的用户兴趣,以便提出建议。此外,KCGN-UI的性能不如KCGN-U和KCGN-I,这再次证实了我们设计的关系聚合函数的有效性。)