- Spring AI与机器学习:智能应用开发新范式
tmjpz04412
人工智能spring机器学习
SpringAI与机器学习的整合SpringAI是一个基于Spring生态的AI开发框架,旨在简化智能应用的开发流程。通过SpringAI,开发者可以快速集成机器学习模型,构建高效的智能应用。SpringAI支持多种机器学习库和框架,如TensorFlow、PyTorch和Scikit-learn,提供统一的API接口。SpringAI的核心优势在于其模块化设计和自动化配置。开发者无需关心复杂的依
- 从零开始构建深度学习环境:基于Pytorch、CUDA与cuDNN的虚拟环境搭建与实践(适合初学者)
荣华富贵8
程序员的知识储备2程序员的知识储备3深度学习pytorch人工智能
摘要:深度学习正在引领人工智能技术的革新,而对于初学者来说,正确搭建深度学习环境是迈向AI研究与应用的第一步。本文将为读者提供一套详尽的教程,指导如何在本地环境中搭建Pytorch、CUDA与cuDNN,以及如何利用Anaconda和PyCharm进行高效开发。内容涵盖从环境配置、常见错误修正,到基础的深度学习模型构建及训练。我们旨在为深度学习零基础的入门者提供一个全面且易于理解的“保姆级”教程,
- 使用 PyTorch 和 Pandas 进行 Kaggle 房价预测
Clang's Blog
AIpytorchpandas人工智能
文章目录1、环境设置2、数据下载3、数据预处理4、模型构建5、训练和验证6、训练模型并生成预测结果7、完整代码在本篇博文中,我们将探索如何使用PyTorch和Pandas库,构建一个用于Kaggle房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。1、环境设置我们首先需要导入所需的库,包括用于数据处理的pandas和numpy,以及用于深度学习的torch。i
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- PyTorch武侠演义 第一卷:初入江湖 第7章:矿洞中的计算禁制
空中湖
pytorch武侠演绎pytorch人工智能python
第一卷:初入江湖第7章:矿洞中的计算禁制矿洞深处罗盘残件在接近矿洞时突然发热,指针疯狂旋转。"就是这里,"欧阳长老抚摸着洞壁上的计算图刻痕,“TensorFlow帮用静态图封印了矿脉。”林小码看到:幽蓝矿脉构成巨大的计算图结构水晶矿簇随呼吸节奏明灭(CUDA核心)矿道中流淌着数据光流(内存带宽)"小心!"大师突然拉回林小码。他刚才踩中的矿砖下陷,触发岩壁上的机关——数十道计算图锁链从四面八方射来!
- 数字人克隆中SyncTalk算法介绍与部署过程
优秘智能UMI
人工智能ubuntu
SyncTalk算法介绍SyncTalk合成同步的头部说话视频,采用三平面哈希表示来保持主体身份。它可以生成同步的嘴唇动作、面部表情和稳定的头部姿势,并恢复头发细节以创建高分辨率视频。部署在Linux中部署该项目,在Ubuntu18.04、Pytorch1.12.1和CUDA11.3上测试。gitclonehttps://github.com/ZiqiaoPeng/SyncTalk.gitcdSy
- 风格迁移(Style Transfer)
1.什么是风格迁移(StyleTransfer):简单介绍风格迁移的概念,指的是将一张图像的内容与另一张图像的艺术风格结合起来,从而生成一个新的图像。例如,将一张风景图像的内容与一幅著名艺术作品(如梵高的《星夜》)的风格结合。应用场景:风格迁移常用于图像生成、艺术创作和增强现实等领域。目标:本文将讲解如何使用PyTorch和VGG19模型实现风格迁移,并展示其核心代码。2.风格迁移的原理在这一部分
- 标签助手:基于LabelImg和YOLOv5的图像半自动标注工具
伏容一Julia
标签助手:基于LabelImg和YOLOv5的图像半自动标注工具项目基础介绍标签助手(labelGo-Yolov5AutoLabelImg)是一个图形化的半自动图像注解工具,它结合了广受欢迎的图像标注工具LabelImg的力量与先进的目标检测框架YOLOv5。这个开源项目旨在简化数据集的标注过程,利用现有YOLOv5PyTorch模型实现快速的半自动化标注,极大地提高了标注效率。项目主要采用Pyt
- 【MMCV】MMCV安装与踩坑
Elendill
Pyhtonpytorchpythonmmcv
确认MMCV版本首先确认项目所需MMCV的版本是多少mmcv2.0版本的代码相比较于=2.0.0安装方法新创建一个conda环境安装pytorch:condainstallpytorchtorchvisiontorchaudiopytorch-cuda=11.8-cpytorch-cnvidia安装mim,这是openmm官方推出的用于安装他们旗下mm系列产品的安装器:pipinstall-Uop
- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- 【语义分割专栏】4:deeplab系列实战篇(附上完整可运行的代码pytorch)
fouen
语义分割pytorch人工智能python计算机视觉深度学习
文章目录前言Deeplab系列全流程代码模型搭建(model)backbone的搭建Deeplabv1Deeplabv2Deeplabv3Deeplabv3+数据处理(dataloader)评价指标(metric)训练流程(train)模型测试(test)效果图结语前言Deeplab系列原理篇讲解:【语义分割专栏】4:deeplab系列原理篇_deeplab系列详解-CSDN博客代码地址,下载可复
- pytorch学习笔记-自定义卷积
墨染枫
深度学习pytorch学习笔记
未完结的草稿———!大概是准备整合一下常见的层,整合完感觉就可以进行搭建了(还没进行到这一步所以不太确定版)(ps我将在完结这一篇的时候删除上面的小字and二编一下整篇文章的结构,如果看到了这部分文字也是很有缘分了/doge这一部分感觉也没啥好说的==也就是reshape部分值得注意一下?剩下的感觉就是了解一下用法就可以importtorchimporttorch.nnasnnimporttorc
- PyTorch武侠演义 第一卷:初入江湖 第5章:玉如意的秘密
第一卷:初入江湖第5章:玉如意的秘密百年秘辛藏经阁最深处,大师掀开尘封的《门派大事记》,指向一幅泛黄的画卷:“看,这就是百年前的优化器长老——欧阳调参。”画中人手持玉如意,面前悬浮着九个水晶球。林小码凑近细看,发现如意上刻着「lr=0.001」。“当年TensorFlow帮为何要盗损失玉佩?”大师叹息:“因为这块玉佩,正是控制玉如意能量的钥匙…”突然,书架后传来机关转动的咔嗒声。一道暗门缓缓打开,
- 使用PyTorch实现目标检测与跟踪
认真写代码i
pytorch目标检测人工智能Python
目标检测与跟踪是计算机视觉领域中的重要任务,它可以帮助我们在图像或视频中准确地定位和跟踪特定物体。PyTorch是一个流行的深度学习框架,提供了强大的工具和库,可以用于目标检测与跟踪的实现。本文将详细介绍如何使用PyTorch实现目标检测与跟踪,并提供相应的源代码。安装PyTorch和相关依赖首先,我们需要安装PyTorch和其他必要的依赖项。你可以通过以下命令使用pip安装PyTorch:pip
- Pytorch 自定义损失函数
DeniuHe
Pytorch
自定义HingeLossclassMyHingeLoss(torch.nn.Module):#不要忘记继承Moduledef__init__(self):super(MyHingeLoss,self).__init__()defforward(self,output,target):"""output和target都是1-D张量,换句话说,每个样例的返回是一个标量."""hinge_loss=1-
- Pytorch实现目标检测
importosimportrandomimportpandasaspdimportnumpyasnpimportcv2fromsklearn.model_selectionimporttrain_test_splitimporttorchfromtorch.utils.dataimportDataset,DataLoaderimporttorch.nnasnnimporttorch.nn.fun
- 解决TensorBoard报错“log_dir is not a directory“的完整指南
SEVEN是7
tensorflowpython深度学习
在使用PyTorch的TensorBoard进行训练可视化时,许多开发者会遇到FailedPreconditionError:./文件名isnotadirectory的错误。本文将深入分析这个问题的根源,并提供完整的解决方案,特别是针对中文路径这一常见但容易被忽视的问题。问题一(目录确实存在的情况下):路径中包含中文解决:更改文件名为正确的命名格式(注意:连模型的文件名也不要用中文,确保绝对路径全
- Pytorch混合精度训练最佳实践
贝塔西塔
工程经验pytorch人工智能深度学习混合精度模型加速
混合精度训练(MixedPrecisionTraining)是一种通过结合单精度(FP32)和半精度(FP16/FP8)计算来加速训练、减少显存占用的技术。它在保持模型精度的同时,通常能带来2-3倍的训练速度提升,并减少约50%的显存使用,是平衡训练效率与数值稳定性的核心技术,尤其在大模型训练中不可或缺。以下从GradScaler底层逻辑、避坑技巧(含NaN解决方案)、PyTorchLightni
- Pytorch自定义优化器最佳实践
在PyTorch中,自定义优化器需要遵循特定的规范以兼容PyTorch的训练流程。下面从核心方法、closure的作用,到Ranger优化器的实现,逐步展开说明。一、PyTorch自定义优化器的必要方法自定义优化器必须继承torch.optim.Optimizer,并实现以下核心方法:init(self,params,defaults)作用:初始化优化器,定义超参数(如学习率、动量等),并为参数组
- PytorchLightning最佳实践基础篇
贝塔西塔
工程经验pytorchLightning深度学习编程框架
PyTorchLightning(简称PL)是一个建立在PyTorch之上的高层框架,核心目标是剥离工程代码与研究逻辑,让研究者专注于模型设计和实验思路,而非训练循环、分布式配置、日志管理等重复性工程工作。本文从基础到进阶,全面介绍其功能、核心组件、封装逻辑及最佳实践。一、PyTorchLightning核心价值原生PyTorch训练代码中,大量精力被消耗在:手动编写训练/验证循环(epoch、b
- Linux指令&&ros学习&&python深度学习&&bug学习笔记
起个别名
LinuxROSPython
##这个文件是关于ros、linux指令,pytorch、python、onnx和相关problem的一些笔记###ROS&&linux**find:在当前路径或指定的路径下递归地搜索文件或目录,并可以根据不同的条件进行过滤和匹配。**```find-name*.pyfind/home/dai/bev_lane_det-main-namemodelsfind/home/dai/bev_lane_d
- 零基础完整版入门经典深度学习时间序列预测项目实战+最新前沿时间序列预测模型代码讲解学习整理(附完整可运行代码)
OverOnEarth
时间序列预测项目实战深度学习学习人工智能
专栏内容本专栏主要整理了作者在时间序列预测领域内的一些学习思路与代码整理,帮助大家在初进入此领域时,可以快速掌握代码进行实战操作,对代码的操作再结合论文阅读肯定是上升更快嘛,作者也愿意和大家一起讨论进步,下面的内容会逐步更新,作者主页的资源列也会放出一些可下载的资源供大家参考学习噢。一、LSTM时间序列预测完整代码示例学习分析(pytorch框架)精选试读文章二、LSTM多变量输入实现多步预测完整
- 第十四章:AI的数据“集装箱”:彻底搞懂Tensor的Batch与维度
爱分享的飘哥
AI新纪元:120日觉醒计划TensorPyTorchBatchSize数据处理AI基础深度学习教程
AI数据集中箱前言:为什么AI从不“零售”,总是“批发”?1:Batch(批次)——GPU的“灵魂伴侣”1.1单个处理vs.批量处理:CPU与GPU的思维差异1.2DataLoader:PyTorch的“自动化装箱员”2:维度的语言——破译[B,L,D]的含义2.1[L,D]:一个句子的“二维画像”2.2[B,L,D]:一批句子的“三维魔方”2.3用代码直观感受维度的增加3:追踪Tensor的“变
- PyTorch中实现早停机制(EarlyStopping)附代码
自信的小螺丝钉
AI知识pytorchpython人工智能AI深度学习
1.核心目的当模型在验证集上的性能不再提升时,提前终止训练防止过拟合,节省计算资源2.实现方法监控验证集指标(如损失、准确率),设置耐心值(Patience)3.代码:classEarlyStopping:def__init__(self,patience=10,delta=0):"""EarlystoppingArgs:patience:int,numberofepochstowaitbefor
- 【已解决】YOLO11模型转wts时报错:PytorchStreamReader failed reading zip archive
lxmyzzs
bug人工智能python计算机视觉目标检测神经网络深度学习
问题:在把训练好的新YOLO11s模型转wts文件时报错,具体信息如下图(PytorchStreamReaderfailedreadingziparchive:failedfindingcentraldirectory)解决:新老版本pytorch之间的兼容问题,改动一下生成wts文件即可。代码帖在下面。importsys#noqa:F401importargparseimportosimport
- Pytorch实现细节解析:Transformer模型的Encoder与Decoder逐行代码讲解
lazycatlove
pytorchtransformer人工智能
文章目录摘要一、Transformer1.1为什么要使用attention1.2Transformer的优点二、Transformer模型Encoder和Decoder原理讲解与其Pytorch逐行实现2.1wordembedding2.2单词索引构成源句子和目标句子2.3构建positionembedding2.4构造encoder的self-attentionmask2.5构造intra-at
- Transformer Masked loss原理精讲及其PyTorch逐行实现
MaskedLoss的核心原理是:在计算损失函数时,只考虑真实有意义的词元(token),而忽略掉为了数据对齐而填充的无意义的填充词元(paddingtoken)。这是重要的技术,可以确保模型专注于学习有意义的任务,并得到一个正确的性能评估。1.原理精讲为什么需要MaskedLoss?在训练神经网络时,我们通常会用一个批次(batch)的数据进行训练,而不是一次只用一个样本。对于自然语言处理任务,
- Transformer模型Decoder原理精讲及其PyTorch逐行实现
老鱼说AI
transformerpytorch深度学习人工智能学习python
原理:Decoder的核心是一个自回归(Auto-regressive)的生成器。它的任务是在给定源序列的编码表示(encoder_outputs)和已生成的目标序列部分(y_1,...,y_{t-1})的条件下,预测出下一个词y_t的概率分布。一个标准的DecoderLayer包含三个核心子层:1.带掩码的多头自注意力(MaskedMulti-HeadSelf-Attention):用于处理已生
- 2025暑期—07YOLO-YOLOV11
宇称不守恒4.0
人工智能图像处理YOLO深度学习人工智能
安装的环境包括YoloV11,torch2.32.4Clip1.0D2LOpenCV4.12等安装1Conda环境安装YOLOcondacreate--prefix=D:/YOLO11/yolo11_envpython=3.10condaactivateD:\YOLO11\yolo11_envPytorch网站确定condainstallpytorch==2.3.0torchvision==0.1
- PyTorch中的词嵌入层(nn.Embedding)详解与实践指南
慕婉0307
自然语言处理pytorchembedding人工智能
一、词嵌入(WordEmbedding)简介词嵌入是自然语言处理(NLP)中的一项核心技术,它将离散的词语映射到连续的向量空间中。通过词嵌入,语义相似的词语在向量空间中的位置也会相近。为什么需要词嵌入?解决维度灾难:传统one-hot编码维度等于词汇表大小,而词嵌入维度可自定义捕捉语义关系:通过向量空间中的距离反映词语间的语义关系迁移学习:预训练的词嵌入可以在不同任务间共享二、PyTorch中的n
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement