- Spring AI与机器学习:智能应用开发新范式
tmjpz04412
人工智能spring机器学习
SpringAI与机器学习的整合SpringAI是一个基于Spring生态的AI开发框架,旨在简化智能应用的开发流程。通过SpringAI,开发者可以快速集成机器学习模型,构建高效的智能应用。SpringAI支持多种机器学习库和框架,如TensorFlow、PyTorch和Scikit-learn,提供统一的API接口。SpringAI的核心优势在于其模块化设计和自动化配置。开发者无需关心复杂的依
- 从零开始构建深度学习环境:基于Pytorch、CUDA与cuDNN的虚拟环境搭建与实践(适合初学者)
荣华富贵8
程序员的知识储备2程序员的知识储备3深度学习pytorch人工智能
摘要:深度学习正在引领人工智能技术的革新,而对于初学者来说,正确搭建深度学习环境是迈向AI研究与应用的第一步。本文将为读者提供一套详尽的教程,指导如何在本地环境中搭建Pytorch、CUDA与cuDNN,以及如何利用Anaconda和PyCharm进行高效开发。内容涵盖从环境配置、常见错误修正,到基础的深度学习模型构建及训练。我们旨在为深度学习零基础的入门者提供一个全面且易于理解的“保姆级”教程,
- 使用 PyTorch 和 Pandas 进行 Kaggle 房价预测
Clang's Blog
AIpytorchpandas人工智能
文章目录1、环境设置2、数据下载3、数据预处理4、模型构建5、训练和验证6、训练模型并生成预测结果7、完整代码在本篇博文中,我们将探索如何使用PyTorch和Pandas库,构建一个用于Kaggle房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。1、环境设置我们首先需要导入所需的库,包括用于数据处理的pandas和numpy,以及用于深度学习的torch。i
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- PyTorch武侠演义 第一卷:初入江湖 第7章:矿洞中的计算禁制
空中湖
pytorch武侠演绎pytorch人工智能python
第一卷:初入江湖第7章:矿洞中的计算禁制矿洞深处罗盘残件在接近矿洞时突然发热,指针疯狂旋转。"就是这里,"欧阳长老抚摸着洞壁上的计算图刻痕,“TensorFlow帮用静态图封印了矿脉。”林小码看到:幽蓝矿脉构成巨大的计算图结构水晶矿簇随呼吸节奏明灭(CUDA核心)矿道中流淌着数据光流(内存带宽)"小心!"大师突然拉回林小码。他刚才踩中的矿砖下陷,触发岩壁上的机关——数十道计算图锁链从四面八方射来!
- 数字人克隆中SyncTalk算法介绍与部署过程
优秘智能UMI
人工智能ubuntu
SyncTalk算法介绍SyncTalk合成同步的头部说话视频,采用三平面哈希表示来保持主体身份。它可以生成同步的嘴唇动作、面部表情和稳定的头部姿势,并恢复头发细节以创建高分辨率视频。部署在Linux中部署该项目,在Ubuntu18.04、Pytorch1.12.1和CUDA11.3上测试。gitclonehttps://github.com/ZiqiaoPeng/SyncTalk.gitcdSy
- 风格迁移(Style Transfer)
1.什么是风格迁移(StyleTransfer):简单介绍风格迁移的概念,指的是将一张图像的内容与另一张图像的艺术风格结合起来,从而生成一个新的图像。例如,将一张风景图像的内容与一幅著名艺术作品(如梵高的《星夜》)的风格结合。应用场景:风格迁移常用于图像生成、艺术创作和增强现实等领域。目标:本文将讲解如何使用PyTorch和VGG19模型实现风格迁移,并展示其核心代码。2.风格迁移的原理在这一部分
- 标签助手:基于LabelImg和YOLOv5的图像半自动标注工具
伏容一Julia
标签助手:基于LabelImg和YOLOv5的图像半自动标注工具项目基础介绍标签助手(labelGo-Yolov5AutoLabelImg)是一个图形化的半自动图像注解工具,它结合了广受欢迎的图像标注工具LabelImg的力量与先进的目标检测框架YOLOv5。这个开源项目旨在简化数据集的标注过程,利用现有YOLOv5PyTorch模型实现快速的半自动化标注,极大地提高了标注效率。项目主要采用Pyt
- 【MMCV】MMCV安装与踩坑
Elendill
Pyhtonpytorchpythonmmcv
确认MMCV版本首先确认项目所需MMCV的版本是多少mmcv2.0版本的代码相比较于=2.0.0安装方法新创建一个conda环境安装pytorch:condainstallpytorchtorchvisiontorchaudiopytorch-cuda=11.8-cpytorch-cnvidia安装mim,这是openmm官方推出的用于安装他们旗下mm系列产品的安装器:pipinstall-Uop
- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- 【语义分割专栏】4:deeplab系列实战篇(附上完整可运行的代码pytorch)
fouen
语义分割pytorch人工智能python计算机视觉深度学习
文章目录前言Deeplab系列全流程代码模型搭建(model)backbone的搭建Deeplabv1Deeplabv2Deeplabv3Deeplabv3+数据处理(dataloader)评价指标(metric)训练流程(train)模型测试(test)效果图结语前言Deeplab系列原理篇讲解:【语义分割专栏】4:deeplab系列原理篇_deeplab系列详解-CSDN博客代码地址,下载可复
- pytorch学习笔记-自定义卷积
墨染枫
深度学习pytorch学习笔记
未完结的草稿———!大概是准备整合一下常见的层,整合完感觉就可以进行搭建了(还没进行到这一步所以不太确定版)(ps我将在完结这一篇的时候删除上面的小字and二编一下整篇文章的结构,如果看到了这部分文字也是很有缘分了/doge这一部分感觉也没啥好说的==也就是reshape部分值得注意一下?剩下的感觉就是了解一下用法就可以importtorchimporttorch.nnasnnimporttorc
- PyTorch武侠演义 第一卷:初入江湖 第5章:玉如意的秘密
第一卷:初入江湖第5章:玉如意的秘密百年秘辛藏经阁最深处,大师掀开尘封的《门派大事记》,指向一幅泛黄的画卷:“看,这就是百年前的优化器长老——欧阳调参。”画中人手持玉如意,面前悬浮着九个水晶球。林小码凑近细看,发现如意上刻着「lr=0.001」。“当年TensorFlow帮为何要盗损失玉佩?”大师叹息:“因为这块玉佩,正是控制玉如意能量的钥匙…”突然,书架后传来机关转动的咔嗒声。一道暗门缓缓打开,
- 使用PyTorch实现目标检测与跟踪
认真写代码i
pytorch目标检测人工智能Python
目标检测与跟踪是计算机视觉领域中的重要任务,它可以帮助我们在图像或视频中准确地定位和跟踪特定物体。PyTorch是一个流行的深度学习框架,提供了强大的工具和库,可以用于目标检测与跟踪的实现。本文将详细介绍如何使用PyTorch实现目标检测与跟踪,并提供相应的源代码。安装PyTorch和相关依赖首先,我们需要安装PyTorch和其他必要的依赖项。你可以通过以下命令使用pip安装PyTorch:pip
- Pytorch 自定义损失函数
DeniuHe
Pytorch
自定义HingeLossclassMyHingeLoss(torch.nn.Module):#不要忘记继承Moduledef__init__(self):super(MyHingeLoss,self).__init__()defforward(self,output,target):"""output和target都是1-D张量,换句话说,每个样例的返回是一个标量."""hinge_loss=1-
- Pytorch实现目标检测
importosimportrandomimportpandasaspdimportnumpyasnpimportcv2fromsklearn.model_selectionimporttrain_test_splitimporttorchfromtorch.utils.dataimportDataset,DataLoaderimporttorch.nnasnnimporttorch.nn.fun
- 解决TensorBoard报错“log_dir is not a directory“的完整指南
SEVEN是7
tensorflowpython深度学习
在使用PyTorch的TensorBoard进行训练可视化时,许多开发者会遇到FailedPreconditionError:./文件名isnotadirectory的错误。本文将深入分析这个问题的根源,并提供完整的解决方案,特别是针对中文路径这一常见但容易被忽视的问题。问题一(目录确实存在的情况下):路径中包含中文解决:更改文件名为正确的命名格式(注意:连模型的文件名也不要用中文,确保绝对路径全
- Pytorch混合精度训练最佳实践
贝塔西塔
工程经验pytorch人工智能深度学习混合精度模型加速
混合精度训练(MixedPrecisionTraining)是一种通过结合单精度(FP32)和半精度(FP16/FP8)计算来加速训练、减少显存占用的技术。它在保持模型精度的同时,通常能带来2-3倍的训练速度提升,并减少约50%的显存使用,是平衡训练效率与数值稳定性的核心技术,尤其在大模型训练中不可或缺。以下从GradScaler底层逻辑、避坑技巧(含NaN解决方案)、PyTorchLightni
- Pytorch自定义优化器最佳实践
在PyTorch中,自定义优化器需要遵循特定的规范以兼容PyTorch的训练流程。下面从核心方法、closure的作用,到Ranger优化器的实现,逐步展开说明。一、PyTorch自定义优化器的必要方法自定义优化器必须继承torch.optim.Optimizer,并实现以下核心方法:init(self,params,defaults)作用:初始化优化器,定义超参数(如学习率、动量等),并为参数组
- PytorchLightning最佳实践基础篇
贝塔西塔
工程经验pytorchLightning深度学习编程框架
PyTorchLightning(简称PL)是一个建立在PyTorch之上的高层框架,核心目标是剥离工程代码与研究逻辑,让研究者专注于模型设计和实验思路,而非训练循环、分布式配置、日志管理等重复性工程工作。本文从基础到进阶,全面介绍其功能、核心组件、封装逻辑及最佳实践。一、PyTorchLightning核心价值原生PyTorch训练代码中,大量精力被消耗在:手动编写训练/验证循环(epoch、b
- Linux指令&&ros学习&&python深度学习&&bug学习笔记
起个别名
LinuxROSPython
##这个文件是关于ros、linux指令,pytorch、python、onnx和相关problem的一些笔记###ROS&&linux**find:在当前路径或指定的路径下递归地搜索文件或目录,并可以根据不同的条件进行过滤和匹配。**```find-name*.pyfind/home/dai/bev_lane_det-main-namemodelsfind/home/dai/bev_lane_d
- 零基础完整版入门经典深度学习时间序列预测项目实战+最新前沿时间序列预测模型代码讲解学习整理(附完整可运行代码)
OverOnEarth
时间序列预测项目实战深度学习学习人工智能
专栏内容本专栏主要整理了作者在时间序列预测领域内的一些学习思路与代码整理,帮助大家在初进入此领域时,可以快速掌握代码进行实战操作,对代码的操作再结合论文阅读肯定是上升更快嘛,作者也愿意和大家一起讨论进步,下面的内容会逐步更新,作者主页的资源列也会放出一些可下载的资源供大家参考学习噢。一、LSTM时间序列预测完整代码示例学习分析(pytorch框架)精选试读文章二、LSTM多变量输入实现多步预测完整
- 第十四章:AI的数据“集装箱”:彻底搞懂Tensor的Batch与维度
爱分享的飘哥
AI新纪元:120日觉醒计划TensorPyTorchBatchSize数据处理AI基础深度学习教程
AI数据集中箱前言:为什么AI从不“零售”,总是“批发”?1:Batch(批次)——GPU的“灵魂伴侣”1.1单个处理vs.批量处理:CPU与GPU的思维差异1.2DataLoader:PyTorch的“自动化装箱员”2:维度的语言——破译[B,L,D]的含义2.1[L,D]:一个句子的“二维画像”2.2[B,L,D]:一批句子的“三维魔方”2.3用代码直观感受维度的增加3:追踪Tensor的“变
- PyTorch中实现早停机制(EarlyStopping)附代码
自信的小螺丝钉
AI知识pytorchpython人工智能AI深度学习
1.核心目的当模型在验证集上的性能不再提升时,提前终止训练防止过拟合,节省计算资源2.实现方法监控验证集指标(如损失、准确率),设置耐心值(Patience)3.代码:classEarlyStopping:def__init__(self,patience=10,delta=0):"""EarlystoppingArgs:patience:int,numberofepochstowaitbefor
- 【已解决】YOLO11模型转wts时报错:PytorchStreamReader failed reading zip archive
lxmyzzs
bug人工智能python计算机视觉目标检测神经网络深度学习
问题:在把训练好的新YOLO11s模型转wts文件时报错,具体信息如下图(PytorchStreamReaderfailedreadingziparchive:failedfindingcentraldirectory)解决:新老版本pytorch之间的兼容问题,改动一下生成wts文件即可。代码帖在下面。importsys#noqa:F401importargparseimportosimport
- Pytorch实现细节解析:Transformer模型的Encoder与Decoder逐行代码讲解
lazycatlove
pytorchtransformer人工智能
文章目录摘要一、Transformer1.1为什么要使用attention1.2Transformer的优点二、Transformer模型Encoder和Decoder原理讲解与其Pytorch逐行实现2.1wordembedding2.2单词索引构成源句子和目标句子2.3构建positionembedding2.4构造encoder的self-attentionmask2.5构造intra-at
- Transformer Masked loss原理精讲及其PyTorch逐行实现
MaskedLoss的核心原理是:在计算损失函数时,只考虑真实有意义的词元(token),而忽略掉为了数据对齐而填充的无意义的填充词元(paddingtoken)。这是重要的技术,可以确保模型专注于学习有意义的任务,并得到一个正确的性能评估。1.原理精讲为什么需要MaskedLoss?在训练神经网络时,我们通常会用一个批次(batch)的数据进行训练,而不是一次只用一个样本。对于自然语言处理任务,
- Transformer模型Decoder原理精讲及其PyTorch逐行实现
老鱼说AI
transformerpytorch深度学习人工智能学习python
原理:Decoder的核心是一个自回归(Auto-regressive)的生成器。它的任务是在给定源序列的编码表示(encoder_outputs)和已生成的目标序列部分(y_1,...,y_{t-1})的条件下,预测出下一个词y_t的概率分布。一个标准的DecoderLayer包含三个核心子层:1.带掩码的多头自注意力(MaskedMulti-HeadSelf-Attention):用于处理已生
- 2025暑期—07YOLO-YOLOV11
宇称不守恒4.0
人工智能图像处理YOLO深度学习人工智能
安装的环境包括YoloV11,torch2.32.4Clip1.0D2LOpenCV4.12等安装1Conda环境安装YOLOcondacreate--prefix=D:/YOLO11/yolo11_envpython=3.10condaactivateD:\YOLO11\yolo11_envPytorch网站确定condainstallpytorch==2.3.0torchvision==0.1
- PyTorch中的词嵌入层(nn.Embedding)详解与实践指南
慕婉0307
自然语言处理pytorchembedding人工智能
一、词嵌入(WordEmbedding)简介词嵌入是自然语言处理(NLP)中的一项核心技术,它将离散的词语映射到连续的向量空间中。通过词嵌入,语义相似的词语在向量空间中的位置也会相近。为什么需要词嵌入?解决维度灾难:传统one-hot编码维度等于词汇表大小,而词嵌入维度可自定义捕捉语义关系:通过向量空间中的距离反映词语间的语义关系迁移学习:预训练的词嵌入可以在不同任务间共享二、PyTorch中的n
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL