最近写过的dp题单(持续更新)

前言:

这是笔者保证做过的且我自己认为很不错的 d p dp dp题集,难度对应 c o d e f o r c e s codeforces codeforces 1800 − 2300 1800-2300 18002300不等。点击题目有链接。

Fence Job(前缀和优化)

思路:

首先读完题可发现的是每个 h [ i ] h[i] h[i]都有个极长区间,也就是 h [ i ] h[i] h[i]只能在这个区间内出现,且作为该区间内的极小值。
看数据应该是 n 2 n^2 n2 d p dp dp,考虑从什么状态入手。我们发现不同的操作可能会出现相同的结果序列,那么我们从操作完最后的序列入手。 d p [ i ] [ j ] dp[i][j] dp[i][j]表示操作前 i i i个数,且最后一个数以 a [ j ] a[j] a[j]结尾的合法序列有多少种。考虑转移:如果最后一个数以 a [ j ] a[j] a[j]结尾,那么前一个数只能以 x x x结尾且 x ≤ a [ j ] x\leq a[j] xa[j]
这么 d p [ i ] [ j ] = ∑ x = 1 j d p [ i − 1 ] [ x ] , a [ x ] ≤ a [ j ] dp[i][j]=\sum_{x=1}^{j}{dp[i-1][x]},a[x]\leq a[j] dp[i][j]=x=1jdp[i1][x],a[x]a[j].用前缀和优化转移即可。

code:

 	cin >> n;
    for(int i = 1; i <= n; i++) cin >> a[i];
    for(int i = 1; i <= n; i++) {
        for(int j = i + 1; j <= n + 1; j++) 
            if(a[j] < a[i]) {
                r[i] = j;
                break;
            }
        for(int j = i - 1; j >= 0; j--) 
            if(a[j] < a[i]) {
                l[i] = j;
                break;
            }
    }
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= n; j++) {
            if(i == 1) {
                if(l[j] < i && i < r[j]) 
                    dp[i][j] = 1;
            } else {
                if(l[j] < i && i < r[j]) {
                    dp[i][j] += sum[i - 1][j];
                }
            }
            sum[i][j] = sum[i][j - 1] + dp[i][j];
        }
    }
    mint ans = 0;
    for(int i = 1; i <= n; i++) ans += dp[n][i];
    cout << ans << '\n';

Yaroslav and Two Strings 线性dp

思路:

很裸的线性 d p dp dp啊,发现状态无非就那么几个:
f [ i ] [ 0 ] : 前 i 个数仅有 s [ j ] ≤ w [ j ] f[i][0]:前i个数仅有s[j]\leq w[j] f[i][0]:i个数仅有s[j]w[j]
f [ i ] [ 1 ] : 前 i 个数有 s [ j ] < w [ j ] & & s [ j ] > w [ j ] f[i][1]:前i个数有s[j]w[j] f[i][1]:i个数有s[j]<w[j]&&s[j]>w[j]
f [ i ] [ 2 ] : 前 i 个数仅有 w [ j ] ≤ s [ j ] f[i][2]:前i个数仅有w[j]\leq s[j] f[i][2]:i个数仅有w[j]s[j]
f [ i ] [ 3 ] : 前 i 个数仅有 s [ j ] = w [ j ] f[i][3]:前i个数仅有s[j]=w[j] f[i][3]:i个数仅有s[j]=w[j]
暴力转移即可

code:

mint f[N][4];
signed main() {
#ifdef JANGYI
    freopen("input.in", "r", stdin);
    freopen("out.out", "w", stdout);
    auto now = clock();
#endif  
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n;
    cin >> n;
    string s, w;
    cin >> s >> w;
    s = ' ' + s; w = ' ' + w;
    f[0][3] = 1;
    for(int i = 1; i <= n; i++) {
        if(s[i] == '?' && w[i] == '?') {
            for(int x = 0; x <= 9; x++)
                for(int y = 0; y <= 9; y++) {
                    if(x < y) {
                        f[i][0] += f[i - 1][0] + f[i - 1][3];
                        f[i][1] += f[i - 1][1] + f[i-  1][2];
                    } else if(x > y) {
                        f[i][1] += f[i - 1][1] + f[i - 1][0];
                        f[i][2] += f[i - 1][2] + f[i - 1][3];
                    } else {
                        f[i][1] += f[i - 1][1];
                        f[i][2] += f[i - 1][2];
                        f[i][0] += f[i - 1][0];
                        f[i][3] += f[i - 1][3];
                    }
                }
        }
        if(s[i] != '?' && w[i] != '?') {
            int x = s[i] - '0', y = w[i] - '0';
            if(x > y) {
                f[i][0] = 0;
                f[i][1] = f[i - 1][1] + f[i - 1][0];
                f[i][2] = f[i - 1][2] + f[i - 1][3];
                f[i][3] = 0;
            } else if(x == y) {
                f[i][0] = f[i - 1][0];
                f[i][1] = f[i - 1][1];
                f[i][2] = f[i - 1][2];
                f[i][3] = f[i - 1][3];
            } else {
                f[i][0] = f[i - 1][0] + f[i - 1][3];
                f[i][1] = f[i - 1][1] + f[i - 1][2];
                f[i][2] = 0;
                f[i][3] = 0;
            }
        }
        if(s[i] != '?' && w[i] == '?') {
            int x = s[i] - '0';
            for(int y = 0; y <= 9; y++) {
                if(x > y) {
                    f[i][1] += f[i - 1][1] + f[i - 1][0];
                    f[i][2] += f[i - 1][2] + f[i - 1][3];
                } else if(x == y) {
                    f[i][0] += f[i - 1][0];
                    f[i][1] += f[i - 1][1];
                    f[i][2] += f[i - 1][2];
                    f[i][3] += f[i - 1][3];
                } else {
                    f[i][0] += f[i - 1][0] + f[i - 1][3];
                    f[i][1] += f[i - 1][1] + f[i - 1][2];
                }
            }
        }
        if(s[i] == '?' && w[i] != '?') {
            int y = w[i] - '0';
            for(int x = 0; x <= 9; x++) {
                if(x > y) {
                    f[i][1] += f[i - 1][1] + f[i - 1][0];
                    f[i][2] += f[i - 1][2] + f[i - 1][3];
                } else if(x == y) {
                    f[i][0] += f[i - 1][0];
                    f[i][1] += f[i - 1][1];
                    f[i][2] += f[i - 1][2];
                    f[i][3] += f[i - 1][3];
                } else {
                    f[i][0] += f[i - 1][0] + f[i - 1][3];
                    f[i][1] += f[i - 1][1] + f[i - 1][2];
                }
            }
        }
        if(s[i] != '?' && w[i] != '?') {
            int x = s[i] - '0', y = w[i] - '0';
            if(x > y) {
                f[i][1] = f[i - 1][1] + f[i - 1][0];
                f[i][2] = f[i - 1][2] + f[i - 1][3];
                f[i][3] = 0;
            } else if(x == y) {
                f[i][0] = f[i - 1][0];
                f[i][1] = f[i - 1][1];
                f[i][2] = f[i - 1][2];
                f[i][3] = f[i - 1][3];
            } else {
                f[i][0] = f[i - 1][0] + f[i - 1][3];
                f[i][1] = f[i - 1][1] + f[i - 1][2];
                f[i][2] = 0;
                f[i][3] = 0;
            }
        }
        // for(int j = 0; j < 4; j++) D(f[i][j])
    }
    cout << f[n][1];
#ifdef JANGYI
    cerr << "================================" << endl;
    cerr << "Program run for " << (clock() - now) / (double)CLOCKS_PER_SEC * 1000 << " ms." << endl;
#endif
    return 0;
}   
/*
仅有:
f[i][0] : s[i] <= w[i];
f[i][1] : s[i] < w[i] & s[i] > w[i];
f[i][2] : s[i] >= w[i];
f[i][3] : s[i] == w[i];
 
*/

杭电多校第三场[Two Permutations]((https://acm.hdu.edu.cn/showproblem.php?pid=7173)(哈希或者记忆化搜索dp)

题意:

给定两个全排列数组 P , Q P,Q P,Q,和一个空数组 R R R,每次从两个数组的首位数字挑一个加到 R R R后面,然后删除该数组。问:给定最后形成的 R R R,求有多少种方案可以构成。

解法一:

我们会发现一个数字会出现两次,那么我们记录每个数字在 R R R中第一次,第二次出现的位置。对于当前数字 p [ i ] p[i] p[i],枚举数字 p [ i + 1 ] p[i+1] p[i+1]出现的位置,那么这两个位置中间就要放 Q Q Q的一段,用哈希判断是否和 R R R这一段子串完全匹配即可。

code:

typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> pii;
template <typename T> void inline read(T &x) {
    int f = 1; x = 0; char s = getchar();
    while (s < '0' || s > '9') { if (s == '-') f = -1; s = getchar(); }
    while (s <= '9' && s >= '0') x = x * 10 + (s ^ 48), s = getchar();
    x *= f;
} 
const int N = 3e5 + 10, M = N * 2, mod1 = 998244353, mod2 = 1e9 + 7;
inline LL ksm(LL a, LL b, int mod){
    LL ans = 1; 
    for(; b; b >>= 1, a = a * a % mod) if(b & 1) ans = ans * a % mod;
    return ans;
}
int dx[] = {1, -1, 0, 0};
int dy[] = {0, 0, -1, 1};

//----------------------------------------------------------------------------------------//
ULL fb[N], fc[N << 1], p[N << 1];
int n, a[N], b[N], c[N << 1];
int dp[N][2], pos[N][2];

inline ULL get(ULL f[], int l, int r) {
    return f[r] - f[l - 1] * p[r - l + 1];
}
inline bool check(int lb, int rb, int lc, int rc) {
    if(lb > rb) return 1;
    if(lb < 1 || rb > n || lc < 1 || rc > n + n) return 0;
    return get(fb, lb, rb) == get(fc, lc, rc);
}
inline void up(int &x, int y) {
    x = x + y >= mod1 ? x + y - mod1 : x + y;
}
void solve() {
    read(n);
    for(int i = 1; i <= n; i++) read(a[i]);
    for(int i = 1; i <= n; i++) read(b[i]);
    for(int i = 1; i <= n + n; i++) read(c[i]);

    for(int i = 1; i <= n; i++) for(int j = 0; j < 2; j++) dp[i][j] = 0;
    for(int i = 1; i <= n; i++) pos[i][0] = pos[i][1] = 0;

    for(int i = 1; i <= n; i++) fb[i] = fb[i - 1] * 233 + b[i];
    for(int i = 1; i <= n << 1; i++) fc[i] = fc[i - 1] * 233 + c[i];
    for(int i = 1; i <= n << 1; i++) {
        if(!pos[c[i]][0]) pos[c[i]][0] = i;
        else pos[c[i]][1] = i;
    }
    int Q = 1;
    for(; Q <= n; Q++) if(!pos[Q][0] || !pos[Q][1]) break;
    if(Q != n + 1) {
        puts("0");
        return;
    }
    for(int j = 0; j < 2; j++) {
        int x = pos[a[1]][j];
        if(check(1, x - 1, 1, x - 1)) dp[1][j] = 1;
    }
    for(int i = 1; i < n; i++) {
        for(int j = 0; j < 2; j++) {
            if(dp[i][j]) {
                int x = pos[a[i]][j];
                for(int k = 0; k < 2; k++) {
                    int y = pos[a[i + 1]][k];
                    if(y <= x) continue;
                    if(check(x - i + 1, y - i - 1, x + 1, y - 1)) 
                        up(dp[i + 1][k], dp[i][j]);
                }
            }
        }
    }
    int ans = 0;
    for(int j = 0; j < 2; j++) 
        if(dp[n][j]) {
            int x = pos[a[n]][j];
            if(check(x - n + 1, n, x + 1, n + n )) up(ans, dp[n][j]);
        }
    printf("%d\n", ans);
}   
signed main() {
#ifdef JANGYI
    freopen("input.in", "r", stdin);
    freopen("out.out", "w", stdout);
    auto now = clock();
#endif
    // ios::sync_with_stdio(false);
    // cin.tie(0);
    p[0] = 1;
    for(int i = 1; i < N << 1; i++) p[i] = p[i - 1] * 233;
    int T = 1;
    read(T);
    while(T--) {
        solve();
    }    

#ifdef JANGYI
    cout << "================================" << endl;
    cout << "Program run for " << (clock() - now) / (double)CLOCKS_PER_SEC * 1000 << " ms." << endl;
#endif
    return 0;
}   

解法二:

我们定义 d p [ i ] [ 0 / 1 ] dp[i][0/1] dp[i][0/1]表示 R R R的第 i i i位与 P / Q P/Q P/Q匹配的方案数。采用记忆化搜索的方法实现即可。

code:

int dp[2 * MAXN][2];

int dfs(int x, int y,int tar) {
    if (x > n && y > n)return 1;
    if (dp[x + y - 1][tar]!=-1)return dp[x + y - 1][tar];
    int ans = 0;
    if (P[x] == S[x + y - 1] && x <= n) {
        ans += dfs(x + 1, y, 0);
        ans %= mod;
    }
    if (Q[y] == S[x + y - 1] && y <= n) {
        ans += dfs(x, y + 1, 1);
        ans %= mod;
    }   
    return dp[x + y - 1][tar] = ans;
}

void slove() {
    cin >> n;
    for (int i = 0; i <= 2 * n + 5; i++)dp[i][0] = dp[i][1] = -1;
    for (int i = 1; i <= n; i++)cin >> P[i];
    for (int i = 1; i <= n; i++)cin >> Q[i];
    for (int i = 1; i <= 2 * n; i++)cin >> S[i];
    int ans = 0;
    if (P[1] == S[1])ans += dfs(2, 1, 0), ans %= mod;
    if (Q[1] == S[1])ans += dfs(1, 2, 1), ans %= mod;
    cout << ans << endl;
}

杭电多校第二场:E Slayers Come(线段树并查集优化)

题意:

给定一个长度为 n n n的数组,每个位置有一个怪兽,有血量 b [ i ] b[i] b[i]和攻击力 a [ i ] a[i] a[i]。有 m m m个技能,每个技能有三个参数: V , L , R V,L,R V,L,R:可以杀死 V V V位置的怪物,这个怪物死后会攻击两边的怪,对左边造成 a [ i ] − L a[i]-L a[i]L伤害,右边造成 a [ i ] − R a[i]-R a[i]R的伤害。求如何组合技能使每个怪都被至少杀一次的方案。

思路:

首先可以发现每个技能是可以杀死一段区间内的怪物,那么我们如果能处理出来所有技能的区间 [ L , R ] [L,R] [L,R],那么问题就转化为从这些技能中选取若干使得区间 [ 1 , n ] [1,n] [1,n]被覆盖,就是区间完全覆盖问题,看数据范围,很容易想到线段树优化,经典题啊!那么我们就该考虑如何快速求出每个技能的区间。依题意如果 a [ i ] − r [ k ] ≥ b [ i + 1 ] a[i]-r[k] \geq b[i+1] a[i]r[k]b[i+1],那么我们就可以通过传递杀死它,那么我们把 a [ i ] − b [ i + 1 ] a[i]-b[i+1] a[i]b[i+1]按从大到小排序,把每个技能的 r r r从小到大排序,优先处理容易死的怪,如果满足上述关系,那么就把 [ i , i + 1 ] [i,i+1] [i,i+1]合并到一个连通块里,用并查集优化。左端点同理。
那么接下来解决如何组合技能是区间被重复覆盖。
对于当前区间 [ L , R ] [L,R] [L,R],
d p [ r ] + = ∑ j = L − 1 R d p [ j ] dp[r]+=\sum_{j=L-1}^{R}{dp[j]} dp[r]+=j=L1Rdp[j] :选这个区间,那么左端点接在 [ L − 1 , R ] [L-1,R] [L1,R]的位置,都可以使 [ 1 , R ] [1,R] [1,R]被覆盖。
0 ≤ j ≤ L − 2 , d p [ j ] = d p [ j ] ∗ 2 0\leq j \leq L-2,dp[j] =dp[j]*2 0jL2,dp[j]=dp[j]2:选不选这个区间,区间 [ 0 , L − 2 ] [0,L-2] [0,L2]还是会被覆盖,因为题目问的是如何组合技能
优化用线段树即可。

code:

来自大佬的代码

#include 
#include 
#include 

using namespace std;
#define int long long
typedef pair<int, int> PII;
const int N = 2e5 + 10, mod = 998244353;
int n, m, a[N], b[N];
struct Node
{
    int v, l, r;
    int ll, rr;
}sk[N];
struct Tree
{
    int l, r;
    int sum;
    int tag;
}tr[N << 2];
int p[N];
PII d[N];

int find(int x)  // 并查集
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

void pushup(int u)
{
    tr[u].sum = (tr[u << 1].sum + tr[u << 1 | 1].sum) % mod;
}

void pushdown(int u)
{
    auto &root = tr[u], &left = tr[u << 1], &right = tr[u << 1 | 1];
    if(root.tag > 1)
    {
        left.sum = left.sum * root.tag % mod, right.sum = right.sum * root.tag % mod;
        left.tag = left.tag * root.tag % mod, right.tag = right.tag * root.tag % mod;
        root.tag = 1;
    }
}

void build(int u, int l, int r)
{
    tr[u] = {l, r, 0, 1};
    if(l == r) return ;
    else
    {
        int mid = l + r >> 1;
        build(u << 1, l, mid);
        build(u << 1 | 1, mid + 1, r);
        pushup(u);
    }
}

void add(int u, int x, int v)
{
    if(x == tr[u].l && x == tr[u].r) tr[u].sum = (tr[u].sum + v) % mod;
    else 
    {
        pushdown(u);
        int mid = tr[u].l + tr[u].r >> 1;
        if(x <= mid) add(u << 1, x, v);
        if(x > mid) add(u << 1 | 1, x, v);
        pushup(u);
    }
}

void mul(int u, int l, int r)
{
    if(l <= tr[u].l && r >= tr[u].r) 
    {
        tr[u].sum = tr[u].sum * 2 % mod;
        tr[u].tag = tr[u].tag * 2 % mod;
    }
    else
    {
        pushdown(u);
        int mid = tr[u].l + tr[u].r >> 1;
        if(l <= mid) mul(u << 1, l, r);
        if(r > mid) mul(u << 1 | 1, l, r);
        pushup(u);
    }
}

int query(int u, int l, int r)
{
    if(l <= tr[u].l && r >= tr[u].r) return tr[u].sum;
    else
    {
        pushdown(u);
        int mid = tr[u].l + tr[u].r >> 1;
        int res = 0;
        if(l <= mid) res = (res + query(u << 1, l, r)) % mod;
        if(r > mid) res = (res + query(u << 1 | 1, l, r)) % mod;
        pushup(u);
        return res % mod;
    }
}

void solve()
{
    cin >> n >> m;
    for(int i = 1 ; i <= n ; i ++ ) cin >> a[i] >> b[i];
    for(int i = 1 ; i <= m ; i ++ )
    {
        int v, l, r;
        cin >> v >> l >> r;
        sk[i] = {v, l, r};
    }
    for(int i = 1 ; i <= n ; i ++ ) p[i] = i;
    for(int i = 1 ; i < n ; i ++ ) d[i] = {a[i] - b[i + 1], i};
    sort(d + 1, d + n);
    sort(sk + 1, sk + m + 1, [](Node &a, Node &b){
        return a.r > b.r;
    });
    int cur = n - 1;
    for(int i = 1 ; i <= m ; i ++ )
    {
        while(cur >= 1 && d[cur].first >= sk[i].r)
        {
            int pos = d[cur].second;
            p[pos] = pos + 1;
            cur -- ;
        }
        sk[i].rr = find(sk[i].v);
    }
        
    
    for(int i = 1 ; i <= n ; i ++ ) p[i] = i;
    for(int i = 1 ; i < n ; i ++ ) d[i] = {a[i + 1] - b[i] , i};
    sort(d + 1, d + n);
    sort(sk + 1, sk + m + 1, [](Node &a, Node &b){
        return a.l > b.l;
    });
    cur = n - 1;
    for(int i = 1 ; i <= m ; i ++ )
    {
        while(cur >= 1 && d[cur].first >= sk[i].l)
        {
            int pos = d[cur].second;
            p[pos + 1] = pos;
            cur --;
        }
        sk[i].ll = find(sk[i].v);
    }
    sort(sk + 1, sk + m + 1, [](Node &a, Node &b){
        return a.rr < b.rr;
    });

    build(1, 0, n);
    add(1, 0, 1);
    for(int i = 1 ; i <= m ; i ++ )
    {
        int l = sk[i].ll , r = sk[i].rr;
        add(1, r, query(1, l - 1, r));
        if(l >= 2) mul(1, 0, l - 2);
    }
    cout << query(1, n, n) << endl;
}

signed main()
{
    ios::sync_with_stdio(0),cin.tie(0);
    int T = 1;
    cin >> T;
    while(T -- ) solve();
    return 0;
}

Pawn(背包+记录路径)

思路:

首先 f [ i ] [ j ] [ w ] f[i][j][w] f[i][j][w]表示从底部走到 ( i , j ) (i,j) (i,j)且当前所有豆子总数 m o d ( k + 1 ) = w mod(k+1)=w mod(k+1)=w的最大豆子数。
那么转移我们就直接枚举是从下一层哪个方向走过来的即可,顺便记录一下路径。

code:

template<int m>
struct modint {
	unsigned int x;
	constexpr modint()noexcept:x(){}
	template<typename T>
	constexpr modint(T x_)noexcept:x((x_%=m)<0?x_+m:x_){}
	constexpr unsigned int val()const noexcept{return x;}
	constexpr modint&operator++()noexcept{if(++x==m)x=0;return*this;}
	constexpr modint&operator--()noexcept{if(x==0)x=m;--x;return*this;}
	constexpr modint operator++(int)noexcept{modint res=*this;++*this;return res;}
	constexpr modint operator--(int)noexcept{modint res=*this;--*this;return res;}
	constexpr modint&operator+=(const modint&a)noexcept{x+=a.x;if(x>=m)x-=m;return*this;}
	constexpr modint&operator-=(const modint&a)noexcept{if(x<a.x)x+=m;x-=a.x;return*this;}
	constexpr modint&operator*=(const modint&a)noexcept{x=(unsigned long long)x*a.x%m;return*this;}
	constexpr modint&operator/=(const modint&a)noexcept{return*this*=a.inv();}
	constexpr modint operator+()const noexcept{return*this;}
	constexpr modint operator-()const noexcept{return modint()-*this;}
	constexpr modint pow(long long n)const noexcept {
		if(n<0)return pow(-n).inv();
		modint x=*this,r=1;
		for(;n;x*=x,n>>=1)if(n&1)r*=x;
		return r;
	}
	constexpr modint inv()const noexcept {
		int s=x,t=m,x=1,u=0;
		while(t)
		{
			int k=s/t;
			s-=k*t;
			swap(s,t);
			x-=k*u;
			swap(x,u);
		}
		return modint(x);
	}
	friend constexpr modint operator+(const modint&a,const modint&b){return modint(a)+=b;}
	friend constexpr modint operator-(const modint&a,const modint&b){return modint(a)-=b;}
	friend constexpr modint operator*(const modint&a,const modint&b){return modint(a)*=b;}
	friend constexpr modint operator/(const modint&a,const modint&b){return modint(a)/=b;}
	friend constexpr bool operator==(const modint&a,const modint&b){return a.x==b.x;}
	friend constexpr bool operator!=(const modint&a,const modint&b){return a.x!=b.x;}
	friend ostream&operator<<(ostream&os,const modint&a){return os<<a.x;}
	friend istream&operator>>(istream&is,modint&a){long long v;is>>v;a=modint(v);return is;}
};
using mint = modint<1000000007>;
// using mint = modint<998244353>;
namespace Combine{
	const int Combine_max = 1e5 + 50;
	mint fac[Combine_max];
	void init() { fac[0] = 1; for (int i = 1; i < Combine_max; ++ i) fac[i] = fac[i - 1] * i; }
	mint A(int n, int m) { return fac[n] / fac[n - m]; }
	mint C(int n, int m) { return fac[n] / (fac[n - m] * fac[m]); }
	mint ksm(mint x, int exp){
		mint res = 1;
		for (; exp; x *= x, exp >>= 1) if (exp & 1) res *= x;
		return res;
	}
}
using namespace Combine;
 
int f[111][111][11]; //f[i][j][w]走到(i,j),价值mod(k+1)=w的最大价值
int n, m, a[111][111];
pii road[111][111][11];
signed main() {
#ifdef JANGYI
    freopen("input.in", "r", stdin);
    freopen("out.out", "w", stdout);
    auto now = clock();
#endif  
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int k; 
    cin >> n >> m >> k;
    k++;
    memset(f, -1, sizeof f);
    for(int i = 1; i <= n; i++) {
        string s; cin >> s;
        for(int j = 1; j <= m; j++)
            a[i][j] = s[j - 1] - '0';
    }
    for(int i = n; i >= 1; i--) {
        for(int j = 1; j <= m; j++) {
            if(i == n) f[n][j][a[i][j] % k] = a[i][j];
            else {
                for(int w = 0; w < k; w++) { 
                    if(j > 1 && f[i + 1][j - 1][(w - a[i][j] % k + k) % k] != -1 && f[i + 1][j - 1][(w - a[i][j] % k + k) % k] + a[i][j] > f[i][j][w]) {
                        f[i][j][w] = f[i + 1][j - 1][(w - a[i][j] % k + k) % k] + a[i][j];
                        road[i][j][w] = {j - 1, (w - a[i][j] % k + k) % k};
                    } 
                    if(j < m && f[i + 1][j + 1][(w - a[i][j] % k + k) % k] != -1 && f[i + 1][j + 1][(w - a[i][j] % k + k) % k] + a[i][j] > f[i][j][w]) {
                        f[i][j][w] = f[i + 1][j + 1][(w - a[i][j] % k + k) % k] + a[i][j];
                        road[i][j][w] = {j + 1, (w - a[i][j] % k + k) % k};
                    }
                }
            }
        }
    }
    int ans = -1, id;
    for(int i = 1; i <= m; i++) {
        if(f[1][i][0] > ans) {
            ans = f[1][i][0];
            id = i;
        }
    }
    // D(id)
    if(ans == -1) {
        cout << -1 << '\n';
        return 0;
    }
    cout << ans << '\n';
    int i = 1, j = id, w = 0;
    vector<string> pos;
    while(i != n) {
        pii now = road[i][j][w];
        if(now.fi == j - 1) pos.pb("R");
        else pos.pb("L");
        // DD(i, j)
        i++;
        j = now.fi; w = now.se;
    }
    cout << j << '\n';
    reverse(all(pos));
    for(auto t : pos) cout << t;
#ifdef JANGYI
    cerr << "================================" << endl;
    cerr << "Program run for " << (clock() - now) / (double)CLOCKS_PER_SEC * 1000 << " ms." << endl;
#endif
    return 0;
}   

你可能感兴趣的:(dp,算法,leetcode,数据结构)